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Abbreviations 

Abbreviation Explanation 

| Symbol used to denote the concatenation of information fields 

AAD Additional Authenticated Data 

AES Advanced Encryption Standard 

CCM Counter with CBC-MAC 

CKDF Cipher-based Key Derivation Function 

CMAC Cipher-based Message Authentication Code 

CSA Client-side Authentication 

CTR_DRBG Counter mode Deterministic Random Byte Generator 

DSK Device Specific Key 

DSK-KDF DSK-Key Derivation Function 

EI Entropy Input (used for seeding a new CTR_DRBG) 

ECDH Elliptic Curve Diffie-Hellman 

IV Initialization vector 

KEX Key exchange 

LSB Least Significant Byte 

MAC Message Authentication Code 

MGRP Multicast Group 

MITM Man-In-The-Middle (security attack) 

MOS Multicast Out Of Sync 

MPAN Multicast Pre-Agreed Nonce 

MSB Most Significant Byte 

N/A Not Applicable 

Nonce Number used once 

NWI Network-Wide Inclusion 

OOB Out-Of-Band (security authentication method) 

PRK Pseudo Random Key 

PRNG Pseudo-Random Number Generator 

QR Quick Response code 

REI Receiver’s Entropy Input 

S0 Security 0 Command Class 

S2 Security 2 Command Class 

S2 MC Security 2 Multicast 

S2 SC Security 2 Singlecast 

S2 SC-F Security 2 Singlecast Follow-up for multicast. 

SCSG Security Commands Supported Get 

SCSR Security Commands Supported Report 

SEI Sender’s Entropy Input 

SIS SUC (Node) ID Server 

SOS Singlecast Out Of Sync 
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Abbreviation Explanation 

SPAN Singlecast Pre-Agreed Nonce 

SRP Secure Remote Password 

SUC Static Update Controller 

 

1 Introduction 
Commands classes are divided in four categories:  

• Application Command Classes [13] 

• Management Command Classes [14]  

• Transport-Encapsulation Command Classes  

• Network-Protocol Command Classes [15] 

The complete list of existing Command Classes with their associated category is available in [12]. 

This document describes the Command Classes designed for Transport or Encapsulation of other 
command classes. 

Read also this document in conjunction with [1] for Z-Wave devices and [8], [9] for Z-Wave Plus devices. 

1.1 Precedence of definitions 
Device Class, Device Type and Command Class Specifications approved as final version during the 
Device Class, Device Type and Command Class Open Review process have precedence over this 
document until integrated into this document. 

1.2 Terms used in this document 
The key words "MUST", "MUST NOT", "REQUIRED",  "SHOULD", "SHOULD NOT", "RECOMMENDED", 
"MAY", and "OPTIONAL" in this document MUST be interpreted as described in IETF RFC 2119 [4]. 

Statements containing the IETF RFC 2119 [4] key words are at times marked with unique requirement 
numbers in the margin. The requirements numbers have the following syntax: CC:xxxx.xx.xx.xx.xxx with 
each x being an hexadecimal digit. 

This document defines functionalities as deprecated or obsoleted. 

The term "obsolete" means that the functionality MUST NOT be supported in new implementations 
applying for certification. 

A controller SHOULD provide controlling capabilities of the actual functionality for backwards 
compatibility with legacy devices. 

The term "deprecated" also indicates an obsolete definition, but it permits new implementations 
applying for certification. 

Thus, the term “deprecated” means that the functionality SHOULD NOT be supported in new 
implementations applying for certification. Often, another substitute functionality is REQUIRED if the 
deprecated functionality is implemented. 

A controller SHOULD provide controlling capabilities of the actual functionality for backwards 
compatibility with legacy devices. 
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2 Command Class Overview 
General Command Class overview and rules are described in the Application Command Class 
Specification [13] and are valid for the Command Classes presented in this document. 

The following subsections present the additional considerations relating to the Encapsulation Command 
Classes. 

2.1 Encapsulation Command Classes support/control 
A node MUST advertise support for Multi Channel Command Class only if it implements End Points. A 
node able to communicate using the Multi Channel encapsulation but implementing no End Point 
MUST NOT advertise support for the Multi Channel Command Class. 

A node able to receive commands encapsulated with the Transport Service, Security (S0/S2) or CRC-16 
Command Class MUST advertise the respective Command Class as supported and MUST also be able to 
send commands encapsulated with the respective Command Class. 

The Command Class support/control definition presented in [13] applies to the Supervision Command 
Class. 

2.2 Node Information Frame 

For the NIF definition, refer to [13]. 

The NIF represents the Root Device’s Command Class capabilities when using no Security encapsulation. 

Multi Channel Root Devices MUST advertise their non-secure capabilities via the NIF. 
Multi Channel End Points MUST advertise their non-secure capabilities via the Multi Channel Capability 
Report Command. 

Security bootstrapped nodes MUST advertise their capabilities using security encapsulation (for both 
Root Devices and End Points) via the Security Commands Supported Report Command or the Security 2 
Commands Supported Report Command. 

2.3 Multi Channel overview 

The section presents the concept of Multi Channel End Points. The concept ties closely to command 
classes such as Multi Channel Command Class, Multi Channel Association Command Class, Association 
Group Information Command Class as well as the Z-Wave Plus Icon Type. Multi Channel functionality 
may be used for controlling as well as for supporting devices. 

2.3.1 Terminology 

A Z-Wave node is conceptually an application resource in a plastic box communicating via a Z-Wave 
radio. Composite devices pack multiple application resources in the same plastic box, thus sharing the 
same Z-Wave radio. Application resources can always be addressed individually. 

Within a network, a Z-Wave node is identified by its NodeID. The NodeID represents the plastic box and 
the radio.  
Multi-resource devices are organized as Multi Channel End Points. Each application resource is 
identified by its own unique End Point. The plastic box itself is referred to as the Root Device.  

Multi Channel Encapsulation allows a sending node to specify a source End Point and a destination End 
Point. Further, the destination End Point may be structured as a multicast mask, targeting up to 7 End 
Points by one command. Multi Channel Encapsulation is used for transmission from one End Point to 
another, from an End Point to a Root Device as well as from a Root Device to an End Point. 

CC:0000.00.00.11.01B 

CC:0000.00.00.11.01C 

CC:0000.00.00.11.01A 
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Multi Channel Encapsulation is not used between Root Devices. 

An Aggregated End Point implements a function which relates to multiple individual End Points. An 
Aggregated End Point is addressed just as an individual End Point. 
One example of an Aggregated End Point is a common power meter of a power strip which measures 
the total power consumption of all End Points. 
The aggregation of End Points should not be confused with multicast addressing. Sending a Meter Reset 
command via multi-End Point addressing to all individual End Points causes all individual End Points to 
reset their individual meters. Sending a Meter Reset command to the Aggregated End Point causes the 
common power meter to be reset. 

Bridging devices may provide connectivity to other technologies than Z-Wave via dynamic End Points. 
Dynamic End Points may be created, changed or removed. 

A controlling device MAY use Multi Channel encapsulation to communicate with Multi Channel End 
Points in other devices. If such a controlling device does not implement any End Points, the device 
MUST NOT advertise the Multi Channel Command Class in the Node Information Frame. 

One may create a Multi Channel Association to allow an End Point to control another End Point. The 
End Point may also control a Root Device. Likewise, a Multi Channel Association may be created to 
allow a Root Device to control an End Point. 

The Association Group Information advertises the association capabilities of each Association Group in 
each End Point as well as in the Root Device. 

2.3.2 Backwards compatibility 

The Multi Channel concept provides a toolbox for sub-addressing. Any controlling device should 
implement the functionality required to interact with supporting Multi Channel devices. 

Legacy devices only understand the concept of the Root Device. Therefore, a Multi Channel device 
providing multiple application resources also provides a meaningful subset of the application 
functionality via the Root Device on behalf of one or more End Points. 

One example is a composite temperature and humidity sensor, which exposes the temperature sensor 
functionality via the Root Device as if the device was a stand-alone temperature sensor. 

Another example is a 5-output power strip implemented as 5 Multi Channel End Points. The Root 
Device exposes one Binary Switch resource but a command to the Root Device spawns internal control 
commands to all outputs, so the Root Device acts as a master switch. 

It is seen that the mapping of application functionality to the Root Device depends heavily on the actual 
product feature set. However, a few principles apply: 

1. The Root Device provides access to the primary functionality of the actual product. 

2. The Root Device of a Multi Channel device does not implement any application functionality 
that cannot be reached via End Points. 

3. The Root Device of a Multi Channel always presents functionality, which can also be reached 
via End Point 1. If it makes sense in the actual product, a Root Device command may affect 
more End Points than End Point 1. 

  
As it is optional how to forward commands from the Root Device to multiple End Points, one cannot be 
sure that a command to the Root Device will target all End Points. The Multi Channel multicast feature 
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may be used to send a Set command to the first 7 End Points. Alternatively, one may communicate to 
each individual End Point. This works for Set as well as Get commands. 

2.3.3 GUI presentation 

The Root Device always advertises application functionality, even when the application functionality is 
actually provided by forwarding commands to one or more End Points of the device. 

Management tools may have a need to present expanded views of Multi Channel devices, e.g. in the 
floor plan view of a smart home deployment. By ignoring application-style Command Classes supported 
by one or more End Points, the Root Device can be presented the way it really works. 

2.3.4 Applicability examples 

• A gateway may target a destination End Point to control the individual output of a power strip 

• A gateway may create a Multi Channel Association from the Root Device Lifeline association 
group of a two-channel indoor/outdoor temperature sensor to receive sensor reports. The 
Multi Channel encapsulation source End Point allows the gateway to distinguish indoor 
readings from outdoor readings. 

• One End Point of a dual End Point indoor/outdoor temperature sensor may have a (non-Multi 
Channel) association created to control the Root Device of an air conditioner on basis of the 
measured indoor temperature. 

2.3.5 Encapsulation order overview 

Command Class encapsulation MUST be applied in the following order: 

1. Encapsulated Command Class (payload), .e.g Basic Set 
2. Multi Command 
3. Supervision 
4. Multi Channel 
5. Any one of the following combinations: 

a. Security (S0 or S2) followed by transport service 
b. Transport Service 
c. Security (S0 or S2) 
d. CRC16  

 

The encapsulation order is also shown in Figure 1 
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Figure 1, Encapsulation overview 

An exception to Figure 1 is made when querying Multi Channel End Points about their secure 
capabilities. In this case, the S0/S2 Security Commands Supported Report Command is carried in a Multi 
Channel encapsulation Command, thus, the encapsulation order is: 
Security (Multi Channel (Security Commands Supported Get Command)) 

Responses to a given frame MUST be carried out using the same encapsulation or lack of encapsulation 
as it was received, unless specified otherwise in the Command Class specification.  

The Transport Service Command Class and Multi Command Command Class are exceptions to the above 
rule.  

The transport service MUST be used only if the payload does not fit in the Z-Wave MAC frame size.  

The Multi Command Command Class is optional to use and SHOULD be used only if several commands 
are queued for transmission. 

3 Command Class Definitions 
The following subchapters contain definitions of Transport-Encapsulation Command Classes. 

3.1 CRC-16 Encapsulation Command Class, version 1 [DEPRECATED] 

THIS COMMAND CLASS HAS BEEN DEPRECATED 
A device MAY implement this Command Class, but it is RECOMMENDED that new implementations 
use the Security 2 Command Class only. 
Note: some Device Types are still REQUIRED to support this Command Class 

 
The CRC-16 Encapsulation Command Class is used to encapsulate a command with an additional CRC-16 
checksum to ensure integrity of the payload. The purpose for this command class is to ensure a higher 
integrity level of payloads carrying important data using 9.6/40kbps communication, in case the LRC 
checksum (8 bits) provided on protocol level is not sufficient to ensure integrity.  

3.1.1 Compatibility Considerations 

3.1.1.1 Node Information Frame (NIF) 
A supporting node MUST always advertise the CRC-16 Command Class in its NIF, regardless of the 
inclusion status and security bootstrapping outcome. 
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A supporting node MUST NOT advertise the CRC-16 Command Class in its S0/S2 Commands Supported 
Report. 

3.1.1.2 Control and support 
The CRC-16 Encapsulation Command Class MUST NOT be encapsulated by any other Command Class. 

Alternatives to using CRC-16 Encapsulation Command Class are: 

• The Security (S0) or Security 2 (S2) Command Class to ensure privacy and integrity of data. 

• The 100kbps communication speed already provides a CRC-16 checksum at the protocol level. 

A node supporting the CRC-16 Encapsulation Command Class may receive a combination of 
encapsulated and normal non-encapsulated requests and the response MUST be as follows: 

a) If the request is sent encapsulated, the response MUST be returned encapsulated. 
b) If the request is sent non-encapsulated, the response MUST be sent non-encapsulated. 

A node supporting the CRC-16 Encapsulation Command Class MUST be able to receive and interpret the 
encapsulated version of all the command classes that it lists in the NIF. 

Before sending an encapsulated command, the controlling node MUST ensure that the destination 
supports the CRC-16 Encapsulation Command Class. 

3.1.2 CRC-16 Encapsulated Command 
The CRC-16 Encapsulation Command is used to encapsulate a command with an additional checksum to 
ensure integrity of the payload. Be aware of the payload limitations with respect to a routed single cast 
frame. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_CRC_16_ENCAP 

Command = CRC_16_ENCAP (0x01) 

Command Class (1 or 2 bytes) 

Command 

Data 1 

… 

Data N 

Checksum 1 

Checksum 2 
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Command Class (8 bits or 16 bits) 

This field MUST specify the Command Class identifier of the encapsulated Command. This field MUST 
carry a normal Command Class (8 bits) or an Extended Command Class (16 bits). 

Command (8 bits) 

This field MUST specify the Command identifier of the encapsulated command. 

Data (N bytes) 

This field MUST carry the payload of the encapsulated command. 

Checksum (16 bits) 

This field is used to advertise the checksum of the data contained in the actual command. 

The checksum MUST be calculated using the CRC-CCITT polynomium using initialization value equal to 
0x1D0F and 0x1021 (normal representation). Refer to [14] Appendix B for the CRC_CCITT source code. 

The checksum data MUST be built by taking all bytes starting from the CRC16 Command Class identifier 
(COMMAND_CLASS_CRC_16_ENCAP) until the last byte of the Data field. 

The first byte of this field MUST be the most significant byte. For example, a node sending a Basic Get 
Command encapsulated with CRC-16 MUST be according to Table 1. 

Table 1, Basic Set Command with CRC-16 encapsulation 

CRC-16 Command fields Value Description 

1 COMMAND_CLASS_CRC_16_ENCAP 0x56 CRC-16 Command Class identifier 

2 CRC_16_ENCAP 0x01 CRC-16 Encapsulation Command id 

3 COMMAND_CLASS_BASIC 0x20 Basic Command Class identifier 

4 BASIC_GET 0x02 Basic Get Command 

5 Checksum 1 0x4D MSB for CRC-16 checksum 

6 Checksum 2 0x26 LSB for CRC-16 checksum 

 

3.2 Multi Channel Command Class, version 3 
The Multi Channel command class is used to address one or more End Points in a Multi Channel device. 

Refer to 2.3 for an introduction to the Multi Channel concept. 

3.2.1 Compatibility considerations 
A Multi Channel device MAY implement from 1 to 127 End Points.  
A Multi Channel device MUST implement all application functionality in End Points.  

End Point 1 MUST implement the primary application functionality of the actual Multi Channel device. 

Additional End Points MAY implement an identical functionality; as an example, a power strip may 
implement five End Points (one for each outlet) with identical functionality. 

For backwards compatibility, the Root Device MUST mirror the application functionality of End Point 1. 

Further, the Root Device MAY mirror the application functionalities of additional End Points. As an 
example, Basic Off and On commands for the Root Device may control all outlets of a power strip with 
five outlets. 
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With the exception of dynamic End Points, the Root Device MUST advertise all End Point functionality 
which is mirrored by the Root Device.  

The Root Device SHOULD NOT advertise the application functionality of any dynamic End Point. 

The Root Device of a Multi Channel device MUST only advertise application functionality that can be 
reached via one or more End Points. However, if the node supports the following Command Classes, 
they SHOULD only be supported and advertised by the Root Device: 

• Central Scene Command Class 

• Configuration Command Class 

• Anti-Theft Command Class 

• Anti-Theft Unlock Command Class 

• Clock Command Classes 

• Geographic Location Command Class 

It MUST NOT be possible to limit the functionality, or enable non-compliant behavior of any End Point 
in the device by sending a command to the Root Device.  

3.2.1.1 Node Information Frame (NIF) 
A node supporting this Command Class MUST set the Optional Functionality bit in its NIF. 

Multi Channel Root Devices MUST advertise their non-secure capabilities via the NIF.  

Multi Channel End Points MUST advertise their non-secure capabilities via the Multi Channel 
Capability Report Command.  

Security bootstrapped nodes MUST advertise their capabilities using security encapsulation (for both 
Root Devices and End Points) via the S0 Security Commands Supported Report Command or the S2 
Security 2 Commands Supported Report Command. 

Secure End Point capabilities are therefore requested using the following encapsulation: 

• S0/S2 Encapsulation 

• Multi Channel Encapsulation 

• S0/S2 Commands Supported Get/Report Commands 

3.2.1.2 Dynamic End Point considerations 

DYNAMIC END POINTS HAVE BEEN OBSOLETED 

Dynamic End Points have been obsoleted. New implementation MUST use dynamic capabilities. 

A node may add and/or remove End Points based on a user action, such as changing configuration 
parameters or the physical addition/removal of a module. When this happen, the node SHOULD treat 
such behavior as dynamic capabilities [For details, refer to Dynamic Capabilities and node discovery 
in Z-Wave Plus v2 Device Type Specification] and notify the End Point modification capabilities to the 
lifeline destinations.  
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An End Point MAY be dynamic. Dynamic End points are intended End Points able to change their 
capabilities or that can be added and removed from a Multi Channel device. 

When creating a new dynamic End Point, it SHOULD be assigned an End Point identifier which has not 
been used recently to allow applications to discover the removal of a dynamic End Point. 

When a dynamic End Point is removed, all other End Points MUST maintain their current End Point 
identifiers.  

A supporting device implementing dynamic End Points MAY advertise the creation, change or removal 
of a dynamic End Point via the Root Device Lifeline association group by issuing a Multi Channel 
Capability Report. 

A node MUST NOT advertise changes to dynamic End Points via broadcast transmission. A receiving 
node MUST ignore such broadcasted advertisements.  

After advertising the removal, a removed dynamic End Point MUST ignore all commands. 

3.2.2 Interoperability considerations 
A controlling node MAY use Multi Channel Encapsulation Command to communicate with Multi 
Channel End Points in other nodes. If such a controlling node does not implement any End Points, it 
MUST NOT advertise the Multi Channel Command Class in its Node Information Frame (NIF) or S0/S2 
Commands Supported Report Command. 

An example of such device would be a controller or gateway which can control End Points in other 
supporting nodes via commands from the Root Device of the gateway. Likewise, the Root Device of the 
gateway may receive unsolicited commands from other nodes End Points. 

3.2.3 Multi Channel End Point Get Command 
This command is used to query the number of End Points implemented by the receiving node. 

The Multi Channel End Point Report Command MUST be returned in response to this command. 

This command MUST NOT be issued via multicast addressing. 

A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_MULTI_CHANNEL 

Command = MULTI_CHANNEL_END_POINT_GET (0x07) 
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3.2.4 Multi Channel End Point Report Command 
This command is used to advertise the number of End Points implemented by the sending node. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_MULTI_CHANNEL 

Command = MULTI_CHANNEL_END_POINT_REPORT (0x08) 

Dyna-
mic 

Iden-
tical 

Res 

Res End Points 

 

Dynamic (1 bit) 

This field is used to advertise if the node implements a dynamic number of End Points.  

The value 1 MUST be used to indicate that the number of End Points is dynamic.  
The value 0 MUST be used to indicate that the number of End Points is static. 

Identical (1 bit) 

This field is used to advertise if all end points have identical capabilities 

This bit MUST be set to 1 if all End Points advertise the same Generic and Specific Device Class and 
support the same Command Classes. 

This bit MUST be set to 0 if End Points do not advertise the same Device Class or Command Class 
information. 

Res 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

End Points (7 bits) 

This field is used to advertise the number of End Points implemented by the sending node.  

This field MUST be in the range 1..127. 

If the sending node implements dynamic End Points, this field MUST advertise the number of End 
Points currently instantiated by the node. A dynamic End Point MAY be assigned any End Point 
identifier in the range 2..127. 
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3.2.5 Multi Channel Capability Get Command 
This command is used to query the non-secure Command Class capabilities of an End Point. 

The Multi Channel Capability Report Command MUST be returned in response to this command unless 
it is to be ignored. 

This command MUST NOT be issued via multicast addressing. 

A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_MULTI_CHANNEL 

Command = MULTI_CHANNEL_CAPABILITY_GET (0x09) 

Res End Point 

 

Res 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

End Point (7 bits) 

This field MUST specify the End Point for which the capabilities MUST be returned. 

If the specified End Point does not exist, this command MUST be ignored. 

If the specified End Point represents a removed dynamic End Point, this command MUST be ignored. 
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3.2.6 Multi Channel Capability Report Command 
This command is used to advertise the Generic and Specific Device Class and the supported command 
classes of an End Point. 

When advertising the removal of a dynamic End Point, this command MUST carry the following values: 

• Dynamic MUST be set to 1 

• End Point MUST be set to the actual End Point identifier 

• Generic Device Class MUST be set to 0xFF (GENERIC_TYPE_NON_INTEROPERABLE) 

• Specific Device Class MUST be set to 0x00 (SPECIFIC_TYPE_NOT_USED) 

• The Command Class field MUST be omitted. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_MULTI_CHANNEL 

Command = MULTI_CHANNEL_CAPABILITY_REPORT (0x0A) 

Dynamic End Point 

Generic Device Class 

Specific Device Class 

Command Class 1 

… 

Command Class N 

 
Dynamic (1 bit) 

This field is used to advertise if the advertised End Point is dynamic. 

This field MUST be set to 1 if this is a dynamic End Point. 
This field MUST be set to 0 to indicate that this is a static End Point. 

End Point (7 bits) 

This field MUST advertise the actual End Point for which the capabilities are advertised. 

Generic Device class (8 bits) 

This field MUST carry the Generic Device Class of the advertised End Point. For a detailed description of 
all available Generic Device Classes, refer to [1] for Z-Wave nodes and [8], [9] for Z-Wave Plus nodes. 

Specific Device class (8 bits) 

This field MUST carry the Specific Device Class of the advertised End Point. For a detailed description of 
all available Specific Device Classes, refer to [1] for Z-Wave nodes and [8], [9] for Z-Wave Plus nodes. 
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Command Class (N bytes) 

This field is used to advertise the non-secure supported Command Classes by the actual End Point. 

This field MUST be omitted if the advertised End Point does not exist or have been removed. The 
number of Command Class bytes MUST be determined from the length of the frame.  

This field MUST represent the capabilities of an End Point with no security encapsulation.  

The Multi Channel Command Class MUST NOT be advertised in this list. 

Non-secure End Point capabilities MUST also be supported securely and MUST also be 
advertised in the S0/S2 Commands Supported Report Commands unless they are encapsulated 
outside Security or Security themselves.  

Nodes supporting S0 MUST advertise S0 as supported for each End Point that can be addressed 
with S0 encapsulation 

Nodes supporting S2 MUST support addressing every End Point with S2 encapsulation and MAY 
explicitly list S2 in the non-secure End Point capabilities.  

3.2.7 Multi Channel End Point Find Command 
This command is used to request End Points having a specific Generic or Specific Device Class in End 
Points. 

The Multi Channel End Point Find Report Command MUST be returned in response to this command. 

This command MUST NOT be issued via multicast addressing. 

A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_MULTI_CHANNEL 

Command = MULTI_CHANNEL_END_POINT_FIND (0x0B) 

Generic Device Class 

Specific Device Class 

 
Generic Device Class (8 bits) 

This field MUST indicate the receiving node to return the list of End Points having the specified Generic 
Device Class. 

The value 0xFF MUST indicate that all existing End Points MUST be returned. If this field is set to 0xFF, 
the Specific Device Class field MUST also be set to 0xFF. 

Specific Device Class (8 bits) 

This field MUST indicate the receiving node to return the list of End Point having the specified Specific 
Device Class. 

The value 0xFF MUST indicate that the list of all End Points having the specified Generic Device Class 
MUST be returned. 
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3.2.8 Multi Channel End Point Find Report Command 
This command is used to advertise End Points that implement a given combination of Generic and 
Specific Device Classes. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_MULTI_CHANNEL 

Command = MULTI_CHANNEL_END_POINT_FIND_REPORT (0x0C) 

Reports to Follow 

Generic Device Class 

Specific Device Class 

Res End Point 1 

… 

Res End Point N 

 
Reports to Follow (8 bits) 

This field is used if multiple Report Commands are necessary for returning all the requested End Points.  

This field MUST advertise the number of Multi Channel End Point Find Report Command following the 
actual frame. 

Generic Device Class (8 bits) 

This field is used to advertise the Generic Device Class of all advertised End Points in this command. 

The value 0xFF MUST be advertised if this value was specified in the Multi Channel End Point Find 
Command. 
If 0xFF is advertised, the Specific Device Class field MUST also advertise the value 0xFF. 

If the value 0xFF is advertised, the advertised End Points MAY implement different Generic and Specific 
Device Classes. 

Specific Device Class (8 bits) 

This field is used to advertise the Specific Device Class of all advertised End Points in this command.  

If the value 0xFF is advertised, the advertised End Points MAY implement different specific device 
classes. 

This field MUST be set to 0xFF if the Generic Device Class field is set to 0xFF. 

Res  

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

End Point (N * 7 bits) 

This field is used to advertise the list of End Point identifier(s) that matches the advertised Generic and 
Specific Device Class values.  

If no End Point matches the advertised Generic Device Class and/or Specific Device Class, the sending 
node MUST set this field to 0x00 and this field’s size MUST be 7 bits (only 1 list entry). 
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3.2.9 Multi Channel Command Encapsulation Command 
This command is used to encapsulate commands to or from a Multi Channel End Point. 

The Multi Channel Command Encapsulation Command MUST NOT carry Source End Point and 
Destination End Point fields that are both zero. 

A receiving node MAY respond to a Multi Channel encapsulated command if the Destination End Point 
field specifies a single End Point. In that case, the response MUST be Multi Channel encapsulated. 

A receiving node MUST NOT respond to a Multi Channel encapsulated command if the Destination End 
Point field specifies multiple End Points via bit mask addressing. 

A node MUST NOT return a Multi Channel Encapsulated command in response to a non-encapsulated 
command. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_MULTI_CHANNEL 

Command = MULTI_CHANNEL_CMD_ENCAP (0x0D) 

Res Source End Point 

Bit 
address 

Destination End Point 

Command Class (1 or 2 bytes) 

Command 

Parameter 1 

... 

Parameter N 

 

Res 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

Source End Point (7 bits) 

This field is used to advertise the originating End Point. The Source End Point MUST be in the range 
0..127. 

The value 0 MUST indicate that the encapsulated command is issued by the Root Device. 
Values in the range 1...127 MUST indicate the actual End Point identifier which issues the encapsulated 
command. 

This field MUST be set to a different value than 0 if the Destination End Point field is set to 0. 

A node returning a response to a Multi Channel encapsulated command MUST swap the Source and 
Destination End Point identifiers in this command. 

This field MUST be set to 0 if a sending node does not implement Multi Channel End Points or if the 
Root Device of the Multi Channel device is issuing a command. 
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Bit address (1 bit) 

This bit is used to advertise if the destination End Point is specified as a bit mask.  

The value 1 MUST indicate that the Destination End Point field is specified as a bit mask. 
The value 0 MUST indicate that the Destination End Point field is specified as an End Point identifier. 

Destination End Point (7 bits) 

This field is used to advertise the destination End Point. 

This field MUST be interpreted based on the “Bit address” value. 

If the Bit Address field is set to 0, the Destination End Point field MUST carry a single End Point identifier 
value in the range 0..127. 

If the Bit Address field is set to 1, the Destination End Point MUST use the following encoding: 

• Bit 0 in the Destination End Point indicates if End Point 1 is a destination 

• Bit 1 in the Destination End Point indicates if End Point 2 is a destination 

• … 

 
The bit value 0 MUST be used to advertise that the corresponding End Point is not a destination. 
The bit value 1 MUST be used to advertise that the corresponding End Point is a destination. 

Command Class (8 bits or 16 bits) 

This field MUST specify the Command Class identifier of the encapsulated Command. This field MUST 
carry a normal Command Class (8 bits) or an Extended Command Class (16 bits) 

Command (8 bits) 

This field MUST specify the Command identifier of the encapsulated command. 

Parameter (N bytes) 

This field MUST carry the payload of the encapsulated command. The length of this field MUST be 
determined from the Z-Wave frame length.  

 

 

3.3 Multi Channel Command Class, version 4 
The Multi Channel Command Class is used to address one or more End Points in a Multi Channel device. 

Refer to 2.3 for an introduction to the Multi Channel concept. 

3.3.1 Compatibility considerations 
Compatibility considerations requirements from version 3 MUST also be observed by a version 4 
supporting node. Refer to 3.2.1 Compatibility considerations. 

Multi Channel Command Class, version 4 is backwards compatible with Multi Channel Command Class, 
version 3. Fields and commands not described in this version MUST remain unchanged from version 3. 
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AGGREGATED END POINTS HAVE BEEN DEPRECATED 

Aggregated End Points have been deprecated. It is RECOMMENDED to issue multiple report back-to-
back if data from several End Points at a precise time needs to be reported. 

Additionally, it is RECOMMENDED to aggregate all sensors functionalities at the Root device. i.e. 
accumulated readings for all End Points SHOULD be advertised via the Root Device. 

 

The Multi Channel Command Class, version 4 introduces Aggregated End Points. Aggregated End Points 
are assigned End Point identifiers following immediately after the identifiers allocated to individual End 
Points. Thus: 

• Aggregated End Points are invisible to devices supporting Multi Channel Command Class, 
version 3 or older. 

• Individual End Points are identical in version 3 and version 4. 

• A version 3 controlling node can discover and control individual End Points. 

• A version 4 controlling node can discover and control individual End Points and Aggregated End 
Points. 

3.3.2 Interoperability considerations 
Interoperability considerations from version 3 MUST also apply in this version.  
Refer to 3.2.2 Interoperability considerations 

3.3.2.1 Aggregated End Point design principles 
An Aggregated End Point MUST implement a function which relates to multiple individual End Points. 

An Aggregated End Point MUST NOT forward commands to individual End Points. In other words, 
communication to a number of individual End Points MUST be done via multiple singlecast commands 
or via bit mask addressing. 

A command issued to an Aggregated End Point MUST NOT cause any individual End Point to return a 
command in response. 

Aggregated End Point MUST be assigned End Point identifiers from a continuous range starting 
immediately after the last individual End Point. 

An Aggregated End Point MUST NOT support other Command Classes and types than the ones explicitly 
listed in Table 2. 
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Table 2, Aggregated End Point Command Class support 

Command Class Type Measurement mode 

Meter Electricity Instant, Accumulated 

Meter Gas Instant, Accumulated 

Meter Water Instant, Accumulated 

Multilevel Sensor Power Instant 

Multilevel Sensor Current Instant 

Multilevel Sensor Air flow Instant 

Multilevel Sensor Tank Capacity Instant 

3.3.2.2 Dynamic End Point considerations 
In the case a node implements both Dynamic and Aggregated End Points, the Aggregated End Points 
identifiers will vary accordingly to the last active dynamic End Point. An illustration is given in Figure 2 

 
Figure 2, Static, dynamic and aggregated End Point layout example 

 
 

3.3.3 Multi Channel End Point Report Command 
This command is used to advertise the number of Multi Channel End Points and other relevant Multi 
Channel attributes.  
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Command Class = COMMAND_CLASS_MULTI_CHANNEL 

Command = MULTI_CHANNEL_END_POINT_REPORT (0x08) 
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Res Aggregated End Points 

 

Fields not described below MUST remain unchanged from version 3. Refer to 3.2.4 Multi Channel End 
Point Report Command 

Res 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

Individual End Points (7 bits) 

This field is used to advertise the number of individual End Points implemented by the sending node. 

This field MUST be in the range 1..127. 

If the sending node implements dynamic End Points, this field MUST advertise the number of End 
Points currently instantiated by the node. A dynamic End Point MAY be assigned any End Point 
identifier in the range 2..127. 

The sum of the values advertised by this field and the Aggregated End Points field MUST be in the range 
1..127. 

Aggregated End Points (7 bits) 

This field is used to advertise the number of Aggregated End Points implemented by this node. 

This field MUST be in the range 0..127. 
The value 0 MUST indicate that no Aggregated End Points are implemented by the sending node. 

3.3.4 Multi Channel Capability Get/Report Commands 
These commands are unchanged in version 4.  

Aggregated End Points SHOULD reply to this command and to the S2/S0 Supported Get Commands. 

Aggregated End Points SHOULD set the Generic and Specific Device Class field to an identical value to 
one of the Individual End Point it aggregates. 

The list of supported Application Command Classes at the highest security level MUST only comprise 
these Command Classes: 

• Meter Command Class 

• Multilevel Sensor Command Class. 

 

3.3.5 Multi Channel Capability Find Report Commands 
This command is unchanged in version 4.  

Aggregated End Points MUST NOT be advertised in the list of End Points returned for any Generic / 
Specific Device Type. 

 

CC:0060.04.08.11.001 

CC:0060.04.08.11.002 

CC:0060.04.08.11.003 

CC:0060.04.08.11.004 

CC:0060.04.08.13.001 

CC:0060.04.08.11.005 

CC:0060.04.08.11.006 
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3.3.6 Multi Channel Aggregated Members Get Command 
This command is used to query the members of an Aggregated End Point. 

The Multi Channel Aggregated Members Report MUST be returned in response to this command. 

This command MUST NOT be issued via multicast addressing. 

A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_MULTI_CHANNEL 

Command = MULTI_CHANNEL_AGGREGATED_MEMBERS_GET (0x0E) 

Res Aggregated End Point 

 
Res 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

Aggregated End Point (7 bits) 

This field MUST specify the Aggregated End Point identifier for which the aggregated members MUST 
be returned. 

The value MUST be in the range of advertised Aggregated End Points. If the value does not indicate 
valid aggregated End Point identifier, a receiving node MUST return a response with the Number of Bit 
Masks field set to zero. 

3.3.7 Multi Channel Aggregated Members Report Command 
This command is used to advertise the members of an Aggregated End Point. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_MULTI_CHANNEL 

Command = MULTI_CHANNEL_AGGREGATED_MEMBERS_REPORT (0x0F) 

Res Aggregated End Point 

Number of Bit Masks 

Aggregated Members Bit Mask 1 

… 

Aggregated Members Bit Mask N 

 

Res 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

Aggregated End Point (7 bits) 

This field is used to advertise the Aggregated End Point identifier for which the members are advertised 
in this command. 

CC:0060.04.0E.11.001 

CC:0060.04.0E.51.001 

CC:0060.04.0E.11.002 

CC:0060.04.0E.11.003 

CC:0060.04.0E.11.004 

CC:0060.04.0E.11.005 

CC:0060.04.0F.11.001 
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Number of Bit Masks (8 bits) 

This field is used to advertise the length in bytes of the Aggregated Member Bit Mask field.  

The value 0 MUST indicate that the Aggregated Members Bit Mask field is MUST be omitted. 
Values in the range 1..255 MUST indicate the length of the Aggregated Members Bit Mask field in bytes. 

 
Aggregated Members Bit Mask (N bytes) 

This field is used to advertise the End Point members of the actual Aggregated End Point.  

The length of this field in bytes MUST be according to the Number of Bit Masks field value. 

This field MUST be treated as a bit mask and MUST use the following encoding for advertising 
members: 

• Bit 0 in Bit Mask 1 indicates if End Point 1 is a member  

• Bit 1 in Bit Mask 1 indicates if End Point 2 is a member 

• … 

The bit value 0 MUST be used to advertise that the corresponding End Point is not a member. 
The bit value 1 MUST be used to advertise that the corresponding End Point is a member. 

The first byte of this field MUST represent End Points 1..8. 

 

3.4  Multi Command Command Class, version 1 
The Multi Command Command Class is used to bundle multiple commands in one encapsulation 
Command. This command class may be used to limit the number of transmissions and to extend battery 
lifetime. 

3.4.1 Interoperability considerations 

The “Answer-as-asked” requirement for Multi Command Encapsulation commands carrying Get 
type commands has been OBSOLETED. 

This allows for a simple parser design in end devices, enables battery power savings and supports the 
deployment of gateways with a part of the application logic placed in the cloud. 

Refer to section 3.4.2 for updated requirements text. 

 

Older implementations may expect Get type commands to be answered with the same encapsulation. 
However, responding nodes MUST NOT return answers with the same encapsulation if the destination 
does not advertise the Multi Command Command Class as supported. 

Supporting nodes SHOULD NOT return an answer Multi Command encapsulated if returning a single 
command and SHOULD NOT return individually Multi Command encapsulated response commands. 

3.4.2 Compatibility Considerations 

3.4.2.1 Multi Command Support 
A node supporting this Command Class MUST be able to receive Multi Command Encapsulated 
commands. 

CC:0060.04.0F.11.002 

CC:0060.04.0F.11.003 

CC:0060.04.0F.11.004 

CC:0060.04.0F.11.005 

CC:008F.01.00.31.001 

CC:008F.01.00.32.001 

CC:008F.01.00.21.001 
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A supporting node MUST support the Multi Command Encapsulation of all command classes advertised 
as supported (for the received Security Class) except for command classes that are encapsulated 
outside Multi Command. Refer to the encapsulation order defined in section 2.3.5. 

A supporting node MUST respond to an encapsulated command requiring an answer to be returned, 
e.g. a Get type Command.  

A responding node MUST NOT return Multi Command encapsulated commands in response to 
encapsulated requests if the sender does not support the Multi Command Command Class. 

3.4.2.2 Multi Command Control 
A node controls the Multi Command Command Class if it sends Multi Command Encapsulated 
commands to supporting nodes. 

It means that a node MAY issue unsolicited Multi Command Encapsulated commands without 
advertising support for the Multi Command Command Class.  

A controlling node MUST verify that the destination supports Multi Command in its NIF before using 
Multi Command Encapsulation or be explicitly enabled by another controller node to use Multi 
Command encapsulation.  

3.4.2.3 Node Information Frame (NIF) 
A supporting node MUST always advertise the Multi Command Command Class in its NIF, regardless of 
the security bootstrapping outcome. 

This allows other nodes bootstrapped on any security level to know that they can use the Multi 
Command encapsulation with the supporting node. 

CC:008F.01.00.21.002 

CC:008F.01.00.21.003 

CC:008F.01.00.21.004 

CC:008F.01.00.21.005 

CC:008F.01.00.23.001 

CC:008F.01.00.51.001 
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3.4.3 Multi Command Encapsulated Command 
The Multi Command Encapsulated Command used to contain multiple Commands.  

The encapsulated Commands MUST be executed in the order they are received. In case Get type 
Commands in a Multi Command Encapsulated Command are received by a device, the Report type 
Commands MUST be returned in the same order as the Get type Commands were received.  

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_MULTI_CMD 

Command = MULTI_CMD_ENCAP (0x01) 

Number of Commands 

Command Length 1 

Command Class 1 (1 or 2 bytes) 

Command 1 

Data 1,1 

… 

Data 1,N 

… 

Command Length X 

Command Class X (1 or 2 bytes) 

Command X 

Data X,1 

… 

Data X,N 

 
Number of Commands (8 bits) 

This field MUST specify the number of encapsulated commands.  

This field SHOULD be set to a value greater than 1. 

Each block carrying an encapsulated command MUST comprise the following fields: 

• Command length 

• Command Class 

• Command 

• Data 

A supporting node MUST accept and execute all encapsulated commands contained in this command.  
A supporting node MUST NOT discard any encapsulated command based on the number of commands 
encapsulated in the command. 

CC:008F.01.01.11.001 

CC:008F.01.01.11.002 

CC:008F.01.01.12.001 

CC:008F.01.01.11.003 

CC:008F.01.01.11.004 
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Command Length (8 bits) 

This field MUST specify the number of bytes occupied by the Command Class, Command and the Data 
fields in the actual command block. 

Command Class (8 bits or 16 bits) 

This field MUST specify the Command Class identifier of the encapsulated command. This field MUST 
carry a normal Command Class (8 bits) or an Extended Command Class (16 bits). 

Command (8 bits) 

This field MUST specify the Command identifier of the encapsulated Command. 

Data (N bytes) 

This field MUST carry the payload of the encapsulated command. 

 

3.5 Security 0 (S0) Command Class, version 1 
The Security Command Class  create the foundation for secure application communication between 
nodes in a Z-Wave network. The security layer provides confidentiality, authentication and replay attack 
robustness through AES-128. 

The Security Command Class defines a number of commands used to facilitate handling of encrypted 
frames in a Z-Wave Network. The commands deal with three main areas: 

• Message Encapsulation. The task of taking a plain text frame and encapsulating the frame into 
an encrypted Security Message. 

• Command Class Handling. The task of handling what command classes are supported when 
communicating with a Security enabled device 

• Network Key Management. The task of initial key distribution.  

3.5.1 Compatibility considerations 
A node supporting the S0 Command Class MAY use the S2 CTR_DRBG as a PNRG. 

3.5.1.1 Node Information Frame (NIF) 
A supporting node MUST advertise the Security 0 Command Class in its NIF before inclusion. 

A supporting node MUST advertise the Security 0 Command Class in its NIF after successful S0 security 
bootstrapping. 

A supporting node MAY advertise the Security 0 Command Class in its NIF after inclusion without 
Security bootstrapping. 

A supporting node MUST NOT advertise the Security 0 Command Class in its S0/S2 Commands 
Supported Report list. 

CC:008F.01.01.11.005 

CC:008F.01.01.11.006 

CC:008F.01.01.11.007 

CC:008F.01.01.11.008 
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3.5.2 Message Encapsulation and Command Class Handling 
For encapsulating messages, Z-Wave requires four commands. Before sending an encrypted frame, the 
sender MUST request a nonce (number used once) from the recipient. The sender subsequently uses 
this number along with the locally generated nonce and the network key to generate the Security 
Message Encapsulation Command as illustrated in Figure 3.  

 

Figure 3, Sending secure messages 

This mechanism generates an overhead of three commands for each single frame that is sent encrypted 
(plus acknowledge frames). 

A number of timers have to be implemented in order to mitigate attacks.  

A timer denoted Nonce request timer in Figure 3 and Figure 4 SHOULD be started by a node sending a 
Nonce Get Command. If the Nonce request timer is started, the Nonce Report MUST be received before 
the timer runs out. The duration of this timer will depend on the application it is trying to protect.  

A timer denoted Nonce timer in Figure 3 and Figure 4  MUST be started by a node after sending a Nonce 
Report Command. The S0 Encapsulated Message MUST be received within the specified timeout in 
order to be accepted. 

The Nonce timer MUST implement a timeout in the range 3..20 seconds. 

Note that the Nonce timer and the Nonce request timer MUST be started when the command has been 
sent and not when the transmission has been acknowledged, since an attacker could delay the 
acknowledgement frame. 

Both timers MUST be used in all communication that uses the mentioned commands. 
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In order to optimize the performance the device MUST use streaming when transmitting multiple 
frames. The overhead using this option will converge towards two (instead of three) transmissions as 
the number of frames increases. 

 
Figure 4, Streaming secure messages 

Notice: The maximum command size is reduced by 20 bytes due to the security encapsulation 
command overhead. Larger commands can use sequencing as described in 3.5.2.3. 

3.5.2.1 Nonce Get Command 
This command is used to request an external nonce from the receiving node.  

Note that a nonce will only be valid for one encrypted command attempt. The nonce is discarded when 
the receiver has used it for decrypting the next received command. A new nonce MUST be exchanged 
for each new command. 

The Nonce Report Command MUST be returned in response to this command. 

This command MUST NOT be issued via multicast addressing. 
A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY 

Security Header = SECURITY_NONCE_GET 
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3.5.2.2 Nonce Report Command 
This command is used to return the next nonce to the requesting node. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY 

Security Header = SECURITY_NONCE_REPORT 

Nonce byte 1 

Nonce byte 2 

Nonce byte 3 

Nonce byte 4 

Nonce byte 5 

Nonce byte 6 

Nonce byte 7 

Nonce byte 8 

 
Nonce byte (8 bytes) 

This field contains the 8 bytes external nonce used for encryption, generated with the PNRG by the 
sending node. 

3.5.2.3 Security Message Encapsulation Command 
The device uses the Security Message Encapsulation command  to encapsulate Z-Wave commands 
using AES-128. 

A sending node is also requesting a new nonce from the receiving node when transmitting the Security 
Message Encapsulation Nonce Get Command. The sending node uses the new nonce when streaming 
multiple secure messages without having to send a separate Nonce Get Command after sending each 
command as shown in Figure 4, Streaming secure messages. 

A device MUST ignore the received Security Message Encapsulation Command if the generated Nonce 
has timed out. 
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7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY 

Security Header = SECURITY_MESSAGE_ENCAPSULATION (_NONCE_GET) 

Initialization Vector byte 1 

Initialization Vector byte 2 

Initialization Vector byte 3 

Initialization Vector byte 4 

Initialization Vector byte 5 

Initialization Vector byte 6 

Initialization Vector byte 7 

Initialization Vector byte 8 

Reserved Second 
Frame 

Sequenced Sequence Counter 

(Command Class identifier) 

(Command identifier) 

Command byte 1 

.. 

Command byte N 

Receiver’s nonce Identifier 

Message Authentication Code byte 1 

Message Authentication Code byte 2 

Message Authentication Code byte 3 

Message Authentication Code byte 4 

Message Authentication Code byte 5 

Message Authentication Code byte 6 

Message Authentication Code byte 7 

Message Authentication Code byte 8 
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Initialization Vector byte (8 byte) 

The initialization vector is the internal nonce generated by the sender. The payload is encrypted with 
the external and internal nonce concatenated together. 

Reserved 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

Sender Receiver

Security Nonce Get

Security Nonce Report

Security Message Encapsulation Nonce Get

Command Class

Command Id

Payload 1

.

.

.

N

Security Nonce Report

Security Message Encapsulation

 

Figure 5, Frame flow for sequenced frames 

Sequenced (1 bit) 

This flag MUST be set if the command is transmitted using multiple frames. This flag MUST not set if the 
command is contained entirely in a single (this) frame. As shown in figure, the first frame in a sequence 
MUST be sent using Security Message Encapsulation Nonce Get. To minimize overhead, following 
frames SHOULD be sent using the Security Message Encapsulation Nonce Get command. The last frame 
MAY be sent using Security Message Encapsulation. 

Notice that device only lists Command class identifier and command identifier in the first frame. 

Second Frame (1 bit) 

If this flag and the Sequenced flag are set, the frame is the second out of two. If the flag is not set, and 
Sequenced flag is set, it is the first frame out of two. Valid combinations are: 

Table 3, Security message encapsulation::Second Frame combinations 

 Sequenced 1 Sequenced 0 

Second Frame 1 Second frame of two - 

Second Frame 0 First frame of two Single Frame 
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Sequence Counter (4 bits) 

If Sequenced flag is set, the frame is one out of two. In order to tell multiple sequences apart, they 
MUST be uniquely identified based on the sender NodeID and the Sequence Counter. For each 
sequenced set of frames a node sends it MUST increment the Sequence Counter by one. 

Command Class Identifier (8 bits) (Part of Encrypted Payload) 

This field contains the identifier of the Command class, which the device sends to the NodeID. 

Command identifier (8 bits) (Part of Encrypted Payload) 

This field contains the identifier of the Command, which the device sends to the NodeID. 

Command byte (N bytes) (Part of Encrypted Payload) 

These fields contain the parameters, which the device sends to the NodeID. 

Receiver’s nonce Identifier (8 bits) 

Identifies nonce being used. 

Message Authentication Code byte (8 bytes) 

Data used for authenticating the received message to prevent tampering. 

3.5.3 Network Key Management 
The same network key is used by all secure nodes in the network. Distribution of network keys uses a 
temporary key to protect the key exchange. Exchange of network key happens immediately after 
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successful inclusion of the node. It requires a secure primary/inclusion controller to include a secure 
node into the secure network as secure. 

3.5.3.1 Network Inclusion 
The first step of including a node to a secure network is using the standard Z-Wave inclusion process. If 
both the new node and the inclusion controller support Security command class, the controller will 
subsequently send the network key to the newly included node. 

 

Figure 6, Inclusion into a secure network 

To protect the security of a secure network, all controllers SHOULD require a PIN to unlock the security 
inclusion process and slaves SHOULD require a PIN to accept being included and excluded. 

Following the inclusion of the node into the network, the controller will request the security scheme 
supported by the included node. Battery operated devices SHOULD stay awake for the duration of the 
setup of the Security Command class. 

Currently one security scheme exist which is extendable at a later stage: 

1. Security 0/N: 0x00 repeated 16 times as temporary key for encrypting the network key when it 
is transferred using normal power. 
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The validity of the key is verified in both the added node and the including controller. The node verifies 
the key based on the Message Authentication Code and then transmits an encrypted Network Key 
Verify command as response to the controller. When a device supporting the Security Command class 
does not manage to enter the secure network, it will function as a non-secure device. The node requires 
exclusion from the network before another attempt comprising of inclusion and network key exchange 
is possible. 

For the currently available Security 0/N scheme, the same network key is used by all nodes in the 
network. 

For the including controller to allow S0 bootstrapping into the secure network, a common security 
scheme needs to be supported by both nodes. When supporting multiple common schemes, the 
highest possible scheme MUST be used. If no common schemes are supported the node MUST NOT be 
S0 bootstrapped. 

When controller nodes in the secure network wish to establish a connection to a node that supports 
the Security 0 Command class, they MUST send the Security 0 Command Supported Get Command to 
the node. Receiving no Security Command Supported Report (since the receiving node does not have 
the key to decrypt the request), means that it will not be able to talk to this node securely. The same 
applies for the situation where a secure node does not become part of the secure network because it 
was included by a non-secure controller. 

A node based on a slave Role Type MUST NOT consider a secure inclusion successful until the Network 
Key Set has been received.  

A node based on a controller Role Type MUST NOT consider the secure inclusion successful until the 
Security Scheme Inherit Command has been received. 
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3.5.3.1.1 Inclusion through Non-Secure Inclusion controller 
A Security-enabled SIS MAY perform secure setup after inclusion from a non-secure inclusion controller. 
As soon as the Security enabled SIS (hereafter SIS), receives information from the non-secure inclusion 
controller that a node with support for the Security command class has been included, the SIS MAY 
start the secure setup process of sending the network key to the newly included node as illustrated in 
Figure 7. At this stage the SIS acts as if it, itself had performed the inclusion and MAY carry out all the 
steps REQUIRED for secure setup, included making sure the timeouts are not exceeded. 

Before starting the Secure inclusion process, the SIS MUST be put into a state that allows it to carry out 
the secure setup for 1 node for the next 3 minutes and no longer. The SIS MUST be put in this state 
through a password-protected menu to avoid unintentional reveal of the network key by a fake 
controller. 

It should be noted that performing the secure setup on behalf of a non-secure inclusion controller 
might add to the complexity of the actions required by the user, and thus make it easier for a hacker to 
perform social engineering to circumvent the security so care must be taken to inform the user 
accordingly. 

Non-Secure Inclusion 

ControllerIncluded Node

Scheme Get

Inclusion Completed

Etc.

Included Node ID X

...

Secure SIS

Secure Activation (3mins max)

 
Figure 7, Secure Inclusion through Non-Secure Inclusion Controller 
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3.5.3.1.2 Inclusion Timers 
As shown in Figure 6, a number of timeout MUST be complied with. For the including controller see 
Figure 8. 

Including Node

Inclusion 

Complete
Scheme Report Nonce Report Key Verify

Security 

Scheme Report
If Controller

Terminate 

Secure 

Inclusion

Timer Exceeded

Timer Exceeded Timer Exceeded Timer Exceeded / Invalid Verify

Timer Exceeded

Secure 

Inclusion 

Complete

If Slave

10 sec max 10 sec max 10 sec max 10 sec max

10 sec max

10 sec max

 

Figure 8, Timers on Including Controller 

For the new included node, the timers in Figure 9 MUST be complied with.  

Included Node

Inclusion 

Complete
Scheme Get Nonce Get Key Set

Security 

Scheme Inherit
If Controller

Terminate 

Secure 

Inclusion

Timer Exceeded

Timer Exceeded Timer Exceeded Timer Exceeded / Invalid Verify

Timer Exceeded

Secure 

Inclusion 

Complete

If Slave

10 sec max 10 sec max 10 sec max 10 sec max

10 sec max

10 sec max

 

Figure 9, Timers on newly Included Node 

The Network Key MUST NOT be sent to the new node if a Security Scheme Report Command is received 
by the including controller later than 10 seconds after successful inclusion of the node. The controller 
SHOULD notify the user of an error condition in case of timeout because the device functions only as 
non-secure. In addition, the included node MUST NOT accept and respond to a Scheme Get it is 
received later than 10 seconds after network inclusion. When a valid frame is received before the 
timeout, the timeout is extended to allow the next part of the inclusion process. The S0 bootstrapping 
process MUST be terminated if any message times out. 
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3.5.3.2 Security Scheme Get Command 
A controlling device MUST send Security Scheme Get Command immediately after the successful 
inclusion of a node that supports the Security Command class.  

A node is considered newly included if it has been included for less than 10 seconds. 

A newly included node MUST return the Security Scheme Report Command in response to this 
command. 

Whether a node has been included securely or non-securely, the node MUST NOT respond to the 
Security Scheme Get command if it is not newly included.  

This command MUST NOT be issued via multicast addressing. 
A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY 

Command = SECURITY_SCHEME_GET 

Supported Security Schemes 

 
Supported Security Schemes (8 bits) 

The Security Schemes which are supported by the primary/inclusion controller. At least one security 
scheme MUST be supported. Values MUST comply withTable 4. 

Table 4, Security Scheme Get::Supported Security Schemes encoding 

Bit Supports 

0 Security 0 using normal power = 0 

 
Bit 0 MUST always be set to 0, indicating support for Security 0. All other bits are reserved and MUST be 
set to zero by a sending node. Reserved bits MUST be ignored by a receiving node. 

3.5.3.3 Security Scheme Report Command 
This command is used to advertise security scheme 0 support by the node being included. Upon 
reception, the including controller MUST send the network key immediately without waiting for input, 
by using 16 times 0x00 as the temporary key. The including controller MUST NOT perform any 
validation of the Supported Security Schemes byte. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY 

Command = SECURITY_SCHEME_REPORT 

Supported Security Schemes 

 
Supported Security Schemes (8 bits) 

Refer to Security Scheme Get Command. 
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3.5.3.4 Network Key Set Command 
The Device can use the Network Key Set Command to set the network key in a Z-Wave node. 
Transmission of the Network Key Set command requires existence of a common agreed security 
scheme. The device uses the agreed temporary key to encapsulate the Network Key Set command. The 
included node MUST handle the Network Key Set command according to the guidelines in section 3.5.3. 

This command MUST be sent encapsulated by the Security Message Encapsulation command. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY 

Command = NETWORK_KEY_SET 

Network Key byte 1 

.. 

Network Key byte N 

 
Network Key byte (N bytes) 

The Network key to exchange application data secure in the network. 

3.5.3.5 Network Key Verify Command 
When the included node has received a Network Key Set that is has successfully decrypted, verified by 
the MAC, it MUST send a Network Key Verify Command to the including controller. If the controller is 
capable of decrypting the Network Key Verify command it would indicate that the included node has 
successfully entered the secure network. Since there is no timeout for the Network Key Verify, the 
controller can send a Security Commands Supported Get command, and if no response is received, it 
SHOULD be concluded that the node has not been included properly.  

This command MUST be sent encapsulated by the Security Message Encapsulation command. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY 

Command = NETWORK_KEY_VERIFY 
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3.5.3.6 Security Scheme Inherit Command 
When a controller is included to the network, it MUST inherit the same security scheme as the including 
controller allowing it to become an inclusion controller. This is achieved through the Security Scheme 
Inherit Command, which is sent when the network key has successfully been setup, as shown in Figure 
6. 

When including a controller into the secure network, the new controller MUST inherit any common 
supported security schemes. For example, if the new controller supports security scheme bit 1 and bit 4 
but the including controller only supports security scheme bit 1, the new controller MUST after 
inclusion also only support security scheme bit 1. 

This command MUST be sent encapsulated by the Security Message Encapsulation command. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY 

Command = SECURITY_SCHEME_INHERIT 

Supported Security Schemes 

 
Supported Security Schemes (8 bits) 

See Security Scheme Get command, for a definition. 

To ensure that the included controller has inherited the correct security scheme, it MUST respond with 
a Security Scheme Report command as illustrated in Figure 6. If the reported security scheme does not 
match, the installer MUST be notified that the included controller is violating the security scheme, and 
the node SHOULD be excluded again as an error situation has occurred. 
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3.5.4 Encapsulated Command Class Handling 
The Node Info Frame is only used to advertise all the command classes that are supported non-
securely. Command classes supported securely MUST be advertised by using the Security Commands 
Supported Get/Report.  

• All non-securely supported command classes MUST also be supported securely.  

• All non-securely controlled command classes MUST also be controlled securely.  

• All non-securely supported command classes MUST NOT be explicitly advertised in the Security 
Commands Supported Report.  

To make a security enabled device compatible with non-secure applications a secure node MAY choose 
to report support for some command classes non-secure in the Node Info Frame, as well as in the 
Security Command Supported Report.  

Initially, the Node Info Frame MUST advertise all non-securely supported command classes, while the 
Node Info Frame MAY advertise non-securely controlled command classes. 

If the node is included into a secure network, it MAY choose to remove all or some command classes 
from the Node Info Frame, and thus only support them securely – removing support for the command 
classes for all non-secure nodes. 

If an S0 node is included into a non-secure network, it MAY choose to support command classes it 
would not support non-securely if it had been included into a secure network.  

An example of this could be a relay as shown in Table 5.  

Table 5, S0 Node Command Class support depending on inclusion (example) 

 Before Inclusion Included Non-
Secure 

Included Secure 

Security Command 
Supported Report 
Frame 

-N/A -N/A 

 

Binary Switch 

Version 

Node Info Frame Security 

Binary Switch 

Version 

Binary Switch 

Version 

Security 

 
It is up to the implementation of each application to decide which commands should be supported 
using security encapsulation and non-secure.  

If a command class is only supported securely it MUST NOT be listed in the node info frame, while it 
MUST be advertised in the security commands supported report frame.  

In a secure network, initially only the including controller will have any knowledge about what nodes in 
the network have been setup securely. If a node wishes to talk to another node it MAY send a Security 
Command Supported Get command encapsulated to the other node. If a Security Commands 
Supported Report is returned the node is in possession of a valid network key, and is part of the secure 
network. This mechanism may also be used by the including controller to ensure that the node has 
been included properly. 

3.5.4.1 Multi Channel Handling 
Any device that supports the Security and Multi Channel Command Classes MAY choose to support a 
different set of Command Classes securely for each Multi Channel End Point. An End Point with support 
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for Security MUST report the Security Command Class as supported for that End Point. The command 
classes supported for each endpoint securely is determined by using the Security Commands Supported 
Get command sent to each individual endpoint Security Encapsulated. Hence, the encapsulation order 
is: Security Encapsulation – Multi Channel Encapsulation – Security Commands Supported Get 
Command 

When communicating with a device that supports multiple Multi Channel End Points, the Security 
Encapsulation MUST be added outside of the Multi Channel Command Class. Thus, a receiving node 
MUST first remove the Security Encapsulation and then forward it to the actual destination Multi 
Channel End Point. 

• A Multi Channel End Point MUST be considered as a separate device, with separate NIF – given 
by Multi Channel Capability Report and Security Commands Supported Report. 

• Multi Channel End Points are logical abstractions. Only the Root Device is included in the 
network. 

This means: 

• Inclusion always deals with the Root Device. 

• A Security Command Support Get must reply as a Root Device. If the Multi Channel Command 
Class is not supported non-securely, it will only be listed in the Security Command Supported 
Report. 

• The Multi Channel Capability Report MUST advertise the Security 0 Command Class as 
supported for all End Points that implement command classes that are supported securely.  
It has been found that legacy nodes do not always advertise the S0 Command Class in their 
Multi Channel Capability Report and still accept all their Command Class using S0 encapsulation. 
A controlling node SHOULD try to control End Points with S0 encapsulation even if S0 is not 
listed in the Multi Channel Capability Report. 

• The implicit rule that all non-secure command classes for an End Point must be controllable 
securely is still in effect, if the endpoint is reported secure. 

• An End Point only inherits the security capabilities of the End Point itself. I.e. each End Point is 
considered a device itself. 
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3.5.4.2 Security Commands Supported Get Command 
This command is used to query the commands supported by the device when using secure 
communication.  

The Security Commands Supported Report Command MUST be returned in response to this command. 

A node MAY choose only to advertise a Command Class as ‘supported’ and/or ‘controlled’, when secure 
communication is used. In that case the Command Class MUST NOT be advertised in the NIF, while it 
MUST be advertised in the Security Commands Supported Report Command. 

Secure communication MUST be used when transmitting this command. 

This command MUST NOT be issued via multicast addressing. 
A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY 

Command = SECURITY_COMMANDS_SUPPORTED_GET 

 

3.5.4.3 Security Commands Supported Report Command 
This command advertises which command classes are supported using security encapsulation.. 

• All non-securely supported command classes MUST NOT be  advertised in the Security 
Commands Supported Report. 

• All securely supported command classes MUST be advertised in the Security Commands 
Supported Report if they are only supported securely.  

Secure communication MUST be used when transmitting this command. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY 

Command = SECURITY_COMMANDS_SUPPORTED_REPORT 

Reports to follow 

Command Class (0x20 – 0xEE) 1 (support) 

… 

Command Class (0x20 – 0xEE) N (support) 

COMMAND_CLASS_MARK 

Command Class (0x20 – 0xEE) 1 (control) 

… 

Command Class (0x20 – 0xEE) K (control) 
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To support extended command classes use the following format. Note that these MAY be mixed. 

This command MUST only be send encapsulated by the Security Message Encapsulation command. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY 

Command = SECURITY_COMMANDS_SUPPORTED_REPORT 

Reports to follow 

Command Class MSB (0xF1 – 0xFF) 1 

Command Class LSB (0x00 – 0xFF) 1 

… 

Command Class MSB (0xF1 – 0xFF) N 

Command Class LSB (0x00 – 0xFF) N 

COMMAND_CLASS_MARK 

Command Class MSB (0xF1 – 0xFF) 1 

Command Class LSB (0x00 – 0xFF) 1 

… 

Command Class MSB (0xF1 – 0xFF) K 

Command Class LSB (0x00 – 0xFF) K 

 

Reports to follow (8 bits) 

This value indicates how many report frames left before transferring the entire list of command classes. 

Command Class (N * 8 or 16 bits) 

The Command Class identifier. 

Command Class Mark (8 bits) 

The COMMAND_CLASS_MARK is used to indicate that all preceding command classes are supported, 
and all following command classes are controlled. 

3.6 Security 2 (S2) Command Class, version 1 
The Security 2 Command Class is a framework for allowing nodes to communicate securely in a Z-Wave 
network. 

The Security 2 Command Class provides backwards compatibility to nodes implementing the Security 0 
Command Class. Security 2 Command Class also defines a new encapsulation format, new Security 
Classes and a new KEX Scheme 1, which together offers a number of advantages over the Security 0 
Command Class. Security 2 Command Class is scalable and allows more KEX Schemes, Security Classes 
and encapsulation formats to be introduced in the future if necessary. 

Communication may be protected for a number of purposes. Known as CIA, the three main areas 
addressed by communications security are Confidentiality, Integrity and Authenticity. Confidentiality 
ensures that only the recipient can decode the communication. Integrity ensures that the recipient can 
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determine if the communication has been modified or replayed. Authentication ensures that the 
communication really comes from the advertised sender. 

Security 2 provides Confidentiality, Integrity and Authentication through: 

• Key Exchange, that allows distribution of Network Keys in a Secure Network while preventing 
interception through:  

• Out-of-Band verification 

• Narrow time windows 

• Physical Activation 

• Secure Message Encapsulation between nodes that have a shared network key.   

• A Pre-Agreed Nonce (PAN) is used to prevent Replay Attacks where communication is 
recorded and played back later, e.g. to unlock a door. In S2 a Nonce is exchanged once and 
then used to compute subsequent Singlecast PANs (SPAN) and Multicast PANs (MPAN), 
respectively. 

• Secure Singlecast communication, supports one-frame secure messages; allowing for lower 
latency and faster response times. 

• Secure Multicast communication, allows a sending node to simultaneously send secure 
messages to multiple nodes.  

• Cryptographic algorithms are intimately dependent on a perfect Pseudo Random Number 
Generator (PRNG). The PRNG is seeded with a unique noise pattern to ensure a unique 
starting point in the long sequence of random numbers generated by the PRNG. Many radio 
systems feature a special mode where the radio is capable of generating white noise which 
is not affected by the RF signal received from the antenna. 

3.6.1 Compatibility Considerations 

3.6.1.1 Command Class dependencies 
Nodes supporting the Security 2 Command Class MUST also support the following command classes: 

• Transport Service Command Class, version 2  

• Supervision Command Class 

In addition, nodes based on a controller Role Type MUST support the following Command Class: 
 

• Inclusion Controller Command Class [15] 

3.6.1.2 Node Information Frame (NIF) 
A supporting node MUST always advertise the Security 2 Command Class in its NIF, regardless of the 
inclusion status and security bootstrapping outcome. 

A supporting node MUST NOT advertise the Security 2 Command Class in its S0/S2 Commands 
Supported Report list. 

3.6.1.3 Mixed Security Classes 
With the advent of the Security 2 Command Class, three new security classes have been added to the 
existing non-secure and Security 0. This makes for a total of five different security levels of which 
neither can communicate directly with each other.  

CC:009F.01.00.21.001 

CC:009F.01.00.21.002 
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In Security 0, this could be alleviated to some extent by allowing a device to choose to support certain 
of its command classes as non-secure. However, the impact of this is that a device is not entirely secure. 
For this reason, command classes SHOULD NOT be supported non-securely by S0 enabled nodes if they 
leak information about the state of the device. 

In Security 2, a node MUST support its command classes only when communication is using its highest 
Security Class granted during security bootstrapping.  
The above rule does not apply to certain command classes, such as Transport Service or Z-Wave Plus 
Info, which must always be supported non-securely and present in the NIF if they are supported by a 
node. In this case, non-secure support requirements are specified in each individual command class 
definition. Command Classes present in the NIF (supported non-securely) MUST be supported at any 
granted Security Class level unless they are encapsulated outside security encapsulation or stated 
otherwise by another requirement (e.g. CC:0074.01.01.11.005,: DT:00.22.0006.1). 

To allow inter-device communication for different security classes, the SIS (or Primary Controller) MAY 
perform Security Class elevation, by working as a middle-man and thus elevating the Security Class of a 
sending device to reach a different Security Class on a receiving device.  
In case a forwarding rule is created from a lower Class to a higher Class, the UI MUST issue a warning to 
the user. 

A node supporting S2 MAY control Command Classes at any of the granted Security Classes. 

A controlling node attempting to communicate with a supporting node SHOULD try using its highest 
Security Class. If the communication is not successful and the controlling node has been granted several 
Security Classes, the controlling node MAY try using any lower Security Classes. 

3.6.1.4 Migration of existing devices to the Security 2 Command Class 
An included node may be upgraded to support S2 via an OTA firmware update. Since non-secure 
operation as well as the Security 0 Command Class provide a lower level of trust, it is not possible to 
automatically switch to S2 protection. Instead the Device Specific Key (DSK) MUST be generated by the 
running firmware on the device after being updated. Having the DSK generated internally, means it is 
not possible to input it directly on the S2 bootstrapping controller (for Access Control and 
Authenticated Security Classes), instead it MUST be possible to input the DSK of the S2 bootstrapping 
controller on the joining node.  

This process is described in further details in 3.6.6.3. 

3.6.2 Security Considerations 

3.6.2.1 Application enabled delivery confirmation  
The use of SPAN and MPAN enables secure communication without preparations for each message. It is 
powerful, yet it requires application awareness. Safety and security related applications like door locks 
may require immediate command confirmations via the Supervision Command Class. Further, the risk 
of a delay attack can be mitigated through the use of the Supervision Command Class. This applies to S2 
Singlecast as well as S2 Multicast transmissions. 

A firmware update process may prefer to transfer firmware fragments as fast as possible while 
accepting the minor risk that the process stops for a moment in the unlikely event that the SPAN needs 
to be updated by the transmitter. 

3.6.2.2 Potential Singlecast Delay Attack via interception and jamming  
Since the SPAN is not limited by a timeout or synchronized clock, it is possible to perform a delay attack 
by intercepting an encrypted message while at the same time jamming the intended receiver. This way, 
the receiver SPAN is not incremented and the receiver will accept the encrypted message when an 
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attacker decides to transmit the delayed message. This attack further requires that the attacker returns 
a MAC layer acknowledgement to the sender to avoid that the user gets error messages. 

The Supervision Command Class SHOULD be used for S2 delivery acknowledgement. Only the intended 
receiver can respond correctly to a Supervision Get command. 

3.6.2.3 Potential Multicast Delay Attack 
Since the MPAN is not limited by a timeout or synchronized clock, it is possible to perform a delay 
attack by intercepting an encrypted message while at the same time jamming the intended receivers. 
This way the receiver MPAN is not incremented and the receivers will accept the encrypted message 
when an attacker decides to transmit the delayed message. 
There is no way to distinguish this attack from simple radio interference phenomena as S2 Multicast 
messages are not acknowledged on the Z-Wave MAC layer. 

While the singlecast follow-up message is primarily intended to ensure command execution in all 
multicast group members, the message also makes the receiver increment its MPAN inner state to 
invalidate previous multicast messages. This effectively eliminates an attacker’s options for mounting a 
multicast delay attack. 

S2 Multicast and singlecast follow-up messages are described in 3.6.5.2. 

3.6.2.4 Circumventing DSK authentication 

3.6.2.4.1 Controller-side authentication 
The first 2 bytes of the public key of the joining node are obfuscated when requesting access to the “S2 
Access Control” or “S2 Authenticated” class. The purpose of the DSK validation procedure is to force the 
user to enter information that can only be gathered from the joining device. 

In other words, a user entering a part of the DSK proves to the including controller that the joining node 
is indeed the node that the user wants to add to the network. With this information, the including 
controller can construct the full public key of the joining node. 
It is theoretically possible for the including controller to guess the complete public key of the joining 
node in less than 65536 calculations without user interaction. The including controller needs to try 
decrypting the received frame until a valid KEX Set (Echo) command is found.  

The DSK verification is a device authentication step that ensures that a joining node can be trusted. The 
security of the system does not depend on the public key being secret but an including controller that 
skips authentication runs the risk of handing out network keys to joining nodes that cannot be trusted. 
A man-in-the-middle attacker may establish a shared secret with the joining node by using the joining 
node’s public key but the user’s including controller will detect a mismatch between the DSK of the 
joining node and the first 2 or 16 bytes of the attacker’s public key. Therefore the including controller 
rejects to complete the security bootstrapping before the network key is exposed to the attacker.  

This applies to the S2 Access Control Class as well as the S2 Authenticated Class. 

3.6.2.4.2 Client-side authentication 
When upgrading existing devices to support Security 2 through an over-the-air (OTA) firmware update, 
there is no DSK printed on the node, which is required for S2 bootstrapping of the S2 Authenticated and 
S2 Access Control Classes. 

In this case, a reverse verification procedure can be carried out, where the controller obfuscates the 
first 4 bytes of its public key and the joining node is input the controller’s DSK in order to perform the 
authentication. 

CC:009F.01.00.42.001 
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3.6.2.4.3 Protecting keys from physical extraction 
A device may be mounted in an outdoor or public location. In such locations, there is a risk that the 
device is removed physically. 
The hardware of the device SHOULD be designed to prevent the read-back of ECDH keys and network 
keys via debug connectors. 

The hardware of the device SHOULD be designed to prevent the read-back of ECDH keys and network 
keys via a malicious firmware image. 

The non-volatile memory used for storing security keys SHOULD be automatically cleared in case a 
firmware image is programmed in the NVM via the debug interface; only allowing keys to survive if 
firmware update is handled entirely via internal software APIs. 

3.6.3 Interoperability considerations 

3.6.3.1 Pragmatic Decryption calculations in constrained environments 
This specification recommends that a receiving node accepts incoming S2 Multicast frames which are 
up to 4 iterations into the future relative to the current MPAN inner state for the actual Group ID. 

This specification also recommends that a sending node issues S2 Singlecast Follow-up frames after 
sending S2 Multicast frames. 

Decryption calculations may put a significant load on constrained processors. Thus, the receiving node 
may still be trying to decrypt a received S2 Multicast frame when an S2 Singlecast Follow-up is received. 

A receiving node MUST respond correctly to an S2 Singlecast frame received immediately after an S2 
Multicast frame. 

A receiving node SHOULD monitor the arrival of S2 Multicast frames in order to avoid repeated MPAN 
synchronization in conditions where the S2 Multicast frame is only rarely received correctly. 

3.6.4 Building Blocks 
S2 functionality is relying on a number of building blocks for different parts of the protocol. 

3.6.4.1 ECDH Key pair generation 
Each S2 node has one or more ECDH key pairs used to setup a temporary secure channel for the 
Network Key exchange. Key pair generation is described in [27]. 

The ECDH private key MUST be created from 32 random bytes, which are generated using the PRNG 
function (3.6.4.7). 
The public key is calculated from the private key using Curve25519 [27]. 

3.6.4.2 Key exchange overview 
In the following, the term Node A refers to the including node (typically a primary controller or SIS) 
while the term Node B refers to the joining node. 

• Inclusion Step 1: Create a shared secret between Node A and Node B 
Both nodes calculate a shared secret based on an Authenticated Elliptic Curve Diffie Hellman 
key exchange (AuthECDH). Node A takes as input the Public Key of B, KeyPub_B and its own 

Private Key, KeyPriv_A. Node B takes as input the Public Key of A, KeyPub_A and its own 
Private Key, KeyPriv_B. Both returning the same ECDH Shared Secret. 

 
o AuthECDH is based on ECDH using Curve25519 [27]. Authentication is achieved through 

user verification as specified in Section 3.6.6.2. 
 

CC:009F.01.00.42.002 

CC:009F.01.00.42.003 

CC:009F.01.00.42.004 

CC:009F.01.00.31.001 

CC:009F.01.00.32.001 

CC:009F.01.00.11.09D 



 Z-Wave Transport-Encapsulation Command Class Specification  

 

© 2021 Z-Wave Alliance, Inc., All Rights Reserved  Page  53 
 

• Inclusion Step 2: Derive shared symmetric key for key exchange 
To establish a temporary Network Key for AES128-CCM and CTR_DRBG, two steps are needed: 

o To convert the ECDH Shared Secret into a 16-byte Pseudo Random Key (PRK). 
CKDF-TempExtract takes as input the ECDH Shared Secret along with 
KeyPub_A  and KeyPub_B. 

o Temporary symmetric keys are derived based on CKDF-TempExpand, by giving the PRK, 
KeyPub_A  and KeyPub_B as input. This returns the following keys: 

▪ Temporary CCM Key, combined Encryption and Authentication Key, denoted 
TempKeyCCM 

▪ Temporary Personalization String, denoted 
TempPersonalizationString. 

• Inclusion Step 3: Exchange permanent Network Keys 
To exchange one or several Permanent Network Key (PNK), Singlecast Message Encapsulation is 
used with temporary symmetric derived keys (TempKeyCCM and 
TempPersonalizationString). 

o All Permanent Network Key Exchanges are carried out using the temporary symmetric 
key. 

o All Permanent CCM Keys, KeyCCM, KeyMPAN and PersonalizationString, are 
derived from the corresponding PNK using CKDF-NetworkKeyExpand  

o All CKDF functions are based on AES128-CMAC. 

• Singlecast Message Encapsulation: 
The algorithm uses an authenticated encryption scheme conforming to AES128-CCM [24]. It is 
used to encrypt and authenticate secure payloads. AES128-CCM takes the KeyCCM and a 
Nonce as input. The algorithm returns a CCM Authenticated Ciphertext. 

o A Nonce is a “Number used Once”. Nonces are initially exchanged between the two 
nodes and then mixed into a Mixed Entropy Input, MEI, using CKDF-MEI-Extract 
and CKDF-MEI-Expand. With both nodes holding the same MEI, they use the MEI 
and PersonalizationString as input into CTR_DRBG to generate a new Nonce. 

• Multicast Message Encapsulation: 
Both singlecast and multicast frames use AES-128 CCM for encryption and authentication but 
multicast frames use a different algorithm to generate the IV. For multicast, the CCM IV is called 
the Multicast Pre-Agreed Nonce (MPAN). 

MPANs are pushed from Node A, to multiple receiving nodes, B1, B2, etc. MPANs MUST be generated 
by Node A (see section 3.6.4.11) and MUST be distributed securely to each node B1, B2 etc. using 
singlecast messages.  

Implementations of the Security 2 Command Class MUST provide AES-128 cryptographic services in the 
following modes of operation: 

• AES-128 “RAW”  
This is also known as the AES-Electronic Code Book (ECB) and defines the basic operation of 
encrypting a 16 Byte Plaintext into a 16 Byte Ciphertext using an encryption key. AES-128 is 
used as a foundation for the following modes. 

• AES-128 CCM  
The Counter with CBC-MAC (CCM) [24] is an authenticated encryption scheme.  

• AES-128 CMAC 
The Cipher based Message Authentication Code (CMAC) is an essential part of the Key 
Derivation functions and used to mix Nonce contributions for SPAN synchronization.  

CC:009F.01.00.11.001 
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• AES-128 CTR_DRBG 
The Counter mode Deterministic Random Byte Generator (CTR_DRBG) [25] is a block cipher 
based Pseudo Random Number Generator (PRNG) that is used to create Initialization Vectors 
and Network Keys. 

In addition to the AES modes, the following building blocks MUST also be provided: 

• AuthECDH 
Authenticated Elliptic Curve Diffie Hellman key exchange. Provides the temporary shared key 
material for protecting the network key exchange during inclusion.  

 

3.6.4.3 Core AES (AES) 
The security layer MUST implement the AES-128 encryption algorithm. This algorithm encrypts a single 
128-bit block of plaintext using the Advanced Encryption Standard, AES. It receives a 128-bit key and a 
128-bit plaintext block as input and produces a 128-bit cipher text block.  

 
Figure 10, AES-ECB (Electronic Code Book) 

3.6.4.4 AES-128 CCM Encryption and Authentication 
The payload in the S2 Message Encapsulation Command MUST be encrypted and authenticated using 
AES-128 CCM. For details about AES-128 CCM and message decryption and validation, refer to [24] and 
[26].  

CCM takes the following input: 

• A combined encryption and authentication key denoted KeyCCM 

• A Nonce  

• A variable-length additional authenticated data structure (AAD) 

• A variable-length payload to encrypt and authenticate 
CCM yields as output: 

• An encrypted version of the payload combined with an authentication tag covering the payload 
and the AAD 

3.6.4.5 CCM profile 
[26] defines a number of parameters that together determine the CCM profile used. S2 nodes MUST 
use the following parameter values for the CCM profile: 

• Additional Authenticated Data (AAD) MUST be used (Adata = 1)  
The actual AAD is defined in section 3.6.4.5.1. 

• The Length field MUST be 2 bytes long (L = 2 bytes) 

• The Authentication tag length MUST be 8 bytes (M = 8 bytes) 
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• The Nonce length MUST be 13 bytes (N = 13 bytes) 

The following length requirements MUST be observed: 

• AAD structures of up to 30 bytes MUST be supported. Larger AAD structures MAY be supported. 

The 13 byte Nonce MUST be generated by taking the 13 most significant bytes of the NextNonce or 
Nonce0 as described in section 3.6.4.9. 

3.6.4.5.1 Additional Authenticated Data (AAD) 
A struture MUST be constructed and used as AAD input for each CCM operation.  

If both the Sender NodeID and Destination Tag are less or equal to 255, the following structure MUST 
be used as ADD: 

7 6 5 4 3 2 1 0 

Sender NodeID 

Destination Tag 

HomeID Byte 1 

… 

HomeID Byte 4 

Message Length Byte 1 (MSB) 

Message Length Byte 2 (LSB) 

Sequence Number 

Reserved 
Enc 
Ext 

 
Ext 

Extension Data 1 

… 

Extension Data M 

 
If either the Sender NodeID or Destination Tag are greater than 255, the following structure MUST be 
used as ADD: 

7 6 5 4 3 2 1 0 

Sender NodeID (MSB) 

Sender NodeID (LSB) 

Destination Tag (MSB) 

Destination Tag (LSB) 

HomeID Byte 1 

… 

HomeID Byte 4 

Message Length Byte 1 (MSB) 
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Message Length Byte 2 (LSB) 

Sequence Number 

Reserved 
Enc 
Ext 

 
Ext 

Extension Data 1 

… 

Extension Data M 

 
 
Sender NodeID (1 or 2 bytes) 

NodeID of the sending node. 

Destination Tag (1 or 2 bytes) 

The use of this field depends on the actual frame. 

If the field is used for a Singlecast frame, this field MUST carry the Receiver NodeID. 
If the field is used for an S2 Multicast frame, this field MUST carry the S2 Multicast Group ID. 

HomeID (4 bytes) 

HomeID of the sending node. 

Message length (2 bytes) 

This field indicates the total length in bytes of the Security 2 Message Encapsulation Command. 

Sequence Number (1 byte) 

Refer to the Security 2 Message Encapsulation Command (1.1.1.1.1). 

Ext (1 bit) 

Refer to the Security 2 Message Encapsulation Command (1.1.1.1.1). 

Enc Ext (1 bit) 

Refer to the Security 2 Message Encapsulation Command (1.1.1.1.1). 

Reserved 

Refer to the Security 2 Message Encapsulation Command (1.1.1.1.1). 

Extension Data (M bytes) 

This field MUST contain all non-encrypted extension objects. 

This field MUST include the Length and Type fields prepending the actual data of each extension. 
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3.6.4.6 Message Authentication Code – AES-128 CMAC 

 
Figure 11, AES-128 CMAC building blocks 

 
AES-128 CMAC is used for key derivation and Nonce mixing. The CMAC operation is specified in [23].  

3.6.4.7 Pseudo Random Number Generator (PRNG) 
The PRNG MUST be used for: 

• Generating new network keys when provisioning a new network. 

• Generating Nonce contributions for synchronizing the SPAN with peer nodes. 

The PRNG MUST be implemented as an AES-128 CTR_DRBG as specified in [25]. The following profile 
MUST be used: 

• No derivation function 

• No reseeding counter 

• Personalization string of 0x00 repeated 32 times 

• Output length = 16 bytes 

• security_strength is not used 

The entropy_input [25] for instantiating the PRNG MUST be generated by a truly random source, e.g. 
white radio noise. The PRNG MUST be hardware seeded. 

The inner state of the PRNG MUST be separated from the SPAN table. 

3.6.4.8 Key extraction and derivation 
The functions described in this section are used during key exchange. 

3.6.4.8.1 CKDF-TempExtract 
The CKDF-TempExtract function is used to extract the key entropy from the non-uniformly distributed 
ECDH Shared Secret. 

CKDF-TempExtract(ConstantPRK, ECDH Shared Secret, KeyPub_A, KeyPub_B ) -
> PRK 

• The function’s input is defined by: 
o ConstantPRK = 0x33 repeated 16 times 

o ECDH Shared Secret is the output of the ECDH key exchange 

o Public Keys of Nodes A and B 

o PRK =  CMAC(ConstantPRK, ECDH Shared Secret | KeyPub_A | 

KeyPub_B ) 
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Figure 12, CKDF-TempExtract function block diagram 

3.6.4.8.2 CKDF-TempExpand 
Once the PRK has been computed, the temporary Authentication, Encryption and Nonce Keys MUST be 
derived using the CKDF-TempExpand function [22]. 

CKDF-TempExpand(PRK, ConstantTE) -> {TempKeyCCM, 

TempPersonalizationString} 

• The function’s input is defined by: 
o PRK is calculated in the previous section 3.6.4.8.1 

o ConstantTE = 0x88 repeated 15 times 

• Calculations are performed as follows: 
o T1 = CMAC(PRK,  ConstantTE | 0x01) 

o T2 = CMAC(PRK, T1 | ConstantTE | 0x02) 

o T3 = CMAC(PRK, T2 | ConstantTE | 0x03) 

• Output is defined as follows: 
o TempKeyCCM = T1. Temporary CCM Key, combined Encryption and 

Authentication Key. 

o TempPersonalizationString = T2 | T3 

 
Figure 13, CKDF-TempExpand function block diagram 

3.6.4.8.3 Permanent Key Exchange 
A node that has been security bootstrapped into the network is characterized by being in possession of 
one or more Network Key(s). This key(s) is used throughout the lifetime of the network, typically 
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measured in years to decades. Different nodes MAY have different Class Keys. A central controller node 
MUST manage all the keys and select at inclusion time which class key(s) to share with a given node. 

Network Keys for all Security 2 Classes MUST be 16 random bytes, generated by using the PRNG 
function described in section 3.6.4.7.  

3.6.4.8.4 Key Derivation 
Once the Network Key(s) has been exchanged, the KeyCCM, PersonalizationString and 

KeyMPAN values MUST be derived using the CKDF-NetworkKeyExpand function [22]. 

CKDF-NetworkKeyExpand (PNK, ConstantNK) -> {KeyCCM, 

PersonalizationString, KeyMPAN} 

• The function’s input is defined by: 
o PNK is the permanent network key. 

o ConstantNK = 0x55 repeated 15 times 

• Calculations are performed as follow: 
o T1 = CMAC(PNK, ConstantNK | 0x01) 

o T2 = CMAC(PNK, T1 | ConstantNK | 0x02) 

o T3 = CMAC(PNK, T2 | ConstantNK | 0x03) 

o T4 = CMAC(PNK, T3 | ConstantNK | 0x04) 

• Output is obtained by: 
o KeyCCM = T1; CCM Key, combined Encryption and 

Authentication 

o PersonalizationString = T2 | T3 

o KeyMPAN = T4 

 

 
Figure 14, CKDF-NetworkKeyExpand function block diagram 

 

3.6.4.9 Nonces for CCM 
The Nonce is used for the CCM encryption in a Security 2 Message Encapsulation Command. Nonces 
provide these security benefits: 

• Replay protection. Replaying an old message will result in the replay being discarded because 
the Nonce has already been used.  

• The security proofs for CCM rely on the assumption that the same plaintext is never encrypted 
under the same key twice. Having unique Nonces upholds this assumption. 
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Singlecast and Multicast transport use different mechanisms for generating Nonces as described in the 
following sections. 
Singlecast Pre-Agreed Nonces are referred to as SPAN.  

Multicast Pre-Agreed Nonces are referred to as MPAN. 

3.6.4.10 SPAN NextNonce Generator 
Singlecast Nonces MUST be generated in the following way: 

Skip steps 1 through 3 if a SPAN is already established 
1. Exchange 16 bytes of Entropy between the Sender and the Receiver 
2. Mix the entropy contributions 
3. Instantiate CTR_DRBG and store the working state in the SPAN table 
4. Generate 13 bytes of Nonce from the established SPAN using the NextNonce function. 
5. Save the updated working state in the SPAN table 

3.6.4.10.1 SPAN Instantiation 
The Sender and Receiver MUST instantiate the CTR_DRBG as follows: 

1. The Sender and Receiver MUST exchange 16 bytes of Entropy Input (EI), resulting in 32 bytes of 
shared entropy 

a. Both contributions MUST be generated using the PRNG (see Section 3.6.4.7) 
2. Mix the 32 bytes EI into MEI, using CKDF-MEI-Extract and CKDF-MEI-Expand 

functions 
The CTR_DRBG MUST be instantiated using the following profile: 

a. Entropy Input = MEI (obtained with CKDF-MEI_Expand) 
b. Personalization_String = PersonalizationString 
c. Output length = 16 
d. No derivation function 
e. No reseeding counter 
f. No Security_strength 

3. The CTR_DRBG now has its inner state set, referred to as the InnerSPAN 

3.6.4.10.1.1 Mixing 
Mixing of the two EIs is done by first calling CKDF-MEI-Extract with the EIs as input and using the 
result as input for CKDF-MEI-Expand 

3.6.4.10.1.1.1 CKDF-MEI-Extract 
CKDF-MEI-Extract(ConstNonce, SenderEI | ReceiverEI) -> NoncePRK 

• The Input is defined by: 
o ConstNonce   = 0x26 repeated 16 times 

• The Output is obtained by: 
o NoncePRK = CMAC(ConstNonce, SenderEI | ReceiverEI) 

3.6.4.10.1.1.2 CKDF-MEI-Expand 
CKDF-MEI-Expand(NoncePRK, ConstEntropyInput) -> MEI 

• The Input is defined by: 
o NoncePRK is the pseudo random value obtained in the Extract 

step. 

o ConstEntropyInput = 0x88 repeated 15 times 

• The Output is obtained by: 
o T0 = ConstEntropyInput | 0x00  

o T1 = CMAC(NoncePRK, T0 | ConstEntropyInput | 0x01) 

o T2 = CMAC(NoncePRK, T1 | ConstEntropyInput | 0x02) 
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o MEI = T1 | T2 

 

3.6.4.10.2 Generation 
With the CTR_DRBG having its inner state set, new SPANs MUST now be generated by subsequent calls 
to the NextNonce function.  

3.6.4.10.2.1 NextNonce 
The NextNonce function is defined as the CTR_DRBG_Generate_algorithm [25] with the following 
parameters: 

• working_state = InnerSPAN 

• requested_number_of_bits = 128 

• additional_input = “” (empty string, i.e. zero bytes) 

The NextNonce function MUST return a new SPAN for each call. The InnerSPAN MUST be stored in 
the SPAN table as described in Section 3.6.5.1.1.  

The 16 bytes of Nonce MUST be truncated to the 13 most significant bytes before passing to the CCM 
module. 

3.6.4.11 MPAN NextNonce Generator 
Multicast Pre-Agreed Nonces (MPAN) are generated by encrypting successive values of a counter. The 
initial value MUST be a 16 byte random number generated by the PRNG (3.6.4.7). Whenever an MPAN 
is generated and consumed by the CCM module, the inner MPAN state is incremented.  

MPAN instantiation and synchronization is described in section 3.6.5.2. 

3.6.4.11.1 MPAN Generation 
MPAN generation is needed when a node sends or receives a secure multicast message. The generation 
procedure, called NextMPAN, MUST comply with the following description: 

1. The node reads the 16-byte inner MPAN state N from the MPAN table. 
2. The node performs an AES-128-ECB encryption of the inner MPAN state N using KeyMPAN 

(obtained during key derivation 3.6.4.8.4) as key. The result is MPAN N. 
3. The node increments the inner MPAN state N. The result is the inner MPAN state N+1 which is 

stored in the MPAN table. The increment operation MUST treat the inner MPAN state as an 
unsigned 16-byte integer. Thus, incrementing all ones MUST yield all zeros. 

 
Figure 15, MPAN generation 
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3.6.5 Message Encapsulation 
The Security 2 Command Class supports Singlecast as well as Multicast communication 

The S2 Transport Layer MUST NOT provide retransmission if the security layer discards a message due 
to SPAN synchronization failure or failed authentication. 

An application SHOULD use the Supervision Command Class for delivery acknowledgement 
of Security 2 Encapsulated commands. 
The Supervision Report command returns high-level status information on the execution status of the 
transmitted command which SHOULD be used by a controlling application instead of polling the 
destination node repeatedly. 

3.6.5.1 Singlecast messages and SPAN Management 
Compared to the Security 0 Command Class, the Security 2 Command Class provides a more efficient 
way to communicate securely. The Security 2 Command Class eliminates the frame overhead of the 
Security 0 Command Class challenge-response handshake.  

Singlecast transport MUST comply with the steps described below: 
1. Before sending an encrypted frame, the Sender MUST establish a Singlecast Pre-Agreed Nonce 

(SPAN) with the Receiver if a SPAN is not already established. 
a. If a SPAN exists between the two nodes: 

i. Skip to step 3 

b. If the Sender is in possession of a matching Receiver’s Entropy Input: 

i. The Sender uses its PRNG to generate a random 16-byte Nonce (SEI). 

ii. The Sender uses the combined 32-byte Sender’s and Receiver’s Entropy Input 
to instantiate a NextNonce Generator, hence creating the inner SPAN state. 
(described in 3.6.4.10) 

iii. Skip to step 3 

c. If no SPAN or matching Receiver’s Entropy Input exists between the two parties: 

i. The Sender holds back the frame for subsequent transmission. 

ii. The Sender sends a Nonce Get to the Receiver 

2. The Receiver uses its PRNG to generate a random 16-byte Nonce, store it in the SPAN table and 
send it in a Nonce Report to the Sender, with the Singlecast Out of Sync (SOS) flag set, to 
indicate that the frame contains a Receiver’s Entropy Input (REI).  

a. The Sender stores the Receiver’s Entropy Input in the SPAN table in the entry matching 
the receiver’s NodeID. 

b. If the Sender has a pending frame for transmission then proceed to step 3. Otherwise 
no further action is taken. 

3. The Sender constructs a Security 2 Message Encapsulation Command. 

a. If the inner SPAN state was just created in step 2.a, the SPAN extension containing the 
SEI is added to the S2 Message encapsulation Command to allow the Receiver to 
compute the same inner SPAN state. 

b. The Sender creates the next SPAN with the NextNonce function. 
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c. The Sender uses the SPAN as IV for the AES-128 CCM encryption and authentication 
(3.6.4.4) of the plaintext payload using KeyCCM. 

d. The Security 2 Message Encapsulation Command is transmitted to the Receiver. 

4. The Receiver inspects the received Security 2 Message Encapsulation Command 

a. If the Receiver is unable to authenticate the singlecast message with the current SPAN, 
the Receiver SHOULD try decrypting the message with one or more of the following 
SPAN values, stopping when decryption is successful or the maximum number of 
iterations is reached. The maximum number of iterations performed by a receiving 
node MUST be in the range 1..5. 

If the maximum number of iterations is reached without successful decryption, a Nonce 
Report MUST be sent to the Sender with the SOS flag set and containing a new REI. At 
the same time, the Receiver MUST invalidate the SPAN table entry for the Sender 
NodeID. 

b. If a SPAN Extension is present, the Receiver MUST: 
i. Instantiate a new SPAN Generator using the Receiver’s Entropy Input stored 

locally and the Sender’s Entropy Input just received. 
ii. Store the inner SPAN state in a SPAN table entry with the Sender as Peer 

NodeID. 
iii. Generate a SPAN by running the NextNonce function on the newly instantiated 

inner SPAN state. 
iv. Attempt authentication with the SPAN. 
v. If the authentication succeeds, skip to step 5. 

vi. If the authentication fails, the Receiver MUST go to step 2. 
c. If the SPAN is already established and a SPAN Extension is not present, the Receiver 

MUST calculate a new inner SPAN state by passing the old inner SPAN state through the 
NextNonce function. 

5. After the Receiver has successfully authenticated the encapsulation command, the decrypted 
payload can be presented to the application layer. 

The process is also illustrated in Figure 16. 
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Figure 16 Singlecast communication frame flow: SPAN establishment 
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3.6.5.1.1 SPAN Table 
A receiving S2 node MUST accept a SPAN table update even if the SPAN table is full.  
It is RECOMMENDED that the node discards the least recently used entry from the SPAN table to make 
room for the new entry. 

A supporting node MUST support at least 1 singlecast session (1 SPAN table entry). 
Supporting always listening nodes MUST support at least 5 concurrent singlecast sessions (5 SPAN table 
entries).  

The following format is RECOMMENDED: 

Table 6, SPAN table format 

7 6 5 4 3 2 1 0 

Reserved Security key Nonce Type 

Sequence Number 

SPAN State Byte 1 

… 

SPAN State Byte 32 

Peer NodeID 

 

Security key(4 bits) 

This field is used to remember which to Security key the SPAN is associated to. An example is given in 
Table 7. 

Table 7, SPAN table::Security key 

Value Description 

0x00 ECDH Temporary Key 

0x01 S2.2: Access Control 

0x02 S2.1: Authenticated 

0x03 S2.0: Unauthenticated 

0x04 S0 

 
Nonce Type (2 bits) 

This field is used to advertise the format of the SPAN State field. 

The field SHOULD be encoded according to Table 8. 
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Table 8, SPAN table:: Nonce Type 

Nonce Type Type Description 

0x00 Free Table entry is not in use. 

0x01 
Receiver’s Entropy 
Input 
(Locally generated) 

Bytes 1-16 are set to zero 
Bytes 17-32 contain the Receiver’s Entropy Input 

0x02 SPAN state Bytes 1-32 contain the SPAN state 

 
Sequence Number (1 byte) 

This field is used to store the sequence number. Refer to description in 1.1.1.1.1 Security 2 Message 
Encapsulation Command. 

A receiving node MUST validate the Sequence Number and the actual sender’s NodeID before accepting 
a SPAN table update. 

SPAN State (32 bytes) 

When the Nonce Type is “SPAN state”, this contains the internal state of the NextNonce Generator. 
When the Nonce Type is Receiver’s Entropy Input this field contains a locally generated Nonce awaiting 
the matching Sender’s Entropy Input. 

Peer NodeID (1 byte) 

This field is used to store the NodeID of the corresponding peer. 

3.6.5.2 Multicast messages and MPAN Management 
The S2 Multicast protocol allows a sending node to reach a group of always listening nodes by using 
pre-agreed information for authentication and encryption. 

The following terminology is used in this section: 

• S2 SC = S2 Singlecast (carried in Z-Wave singlecast frame) 

• S2 MC  = S2 Multicast (carried in Z-Wave broadcast or multicast frame, with the MGRP 
extension) 

• S2 SC-F = S2 Singlecast Follow-up (carried in Z-Wave singlecast frame, with the MGRP 
extension) 

An S2 Multicast group MUST be represented by a unique (sender NodeID, Group ID) combination.  
A multicast sender or group owner MAY maintain multiple S2 Multicast groups.  
Sending and receiving nodes MUST maintain a unique Multicast Pre-Agreed Nonce (MPAN) value for 
each Group ID.  
The MPAN is sender specific, and MUST NOT be used by the receiver to send S2 Multicast frames. S2 
Multicast can only be performed within a group of nodes in the same S2 Security Class. 

All nodes in the network will receive the S2 Multicast frame and will not try to decrypt it if the MPAN of 
the corresponding (sender NodeID, Group ID) is not known. The S2 Multicast protocol uses S2 SC-F 
frames for MPAN synchronization.  

A sending node SHOULD send an S2 SC-F frame to each S2 Multicast group member after sending an S2 
MC frame. This ensures that all group members receive the frame and at the same time eliminates the 
risk of the S2 MC frame being replayed in a delay attack. 
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S2 SC-F SHOULD be sent frequently in order to ensure that MPAN is synchronized at every group 
member. 

S2 Multicast employs a self-healing algorithm for MPAN synchronization. The reception of an S2 SC-F 
allows the receiving node to return an MPAN Out of Sync (MOS) indication (Either using a Nonce Report 
with the MOS flag or a S2 Message Encapsulation with the MOS extension, refer to 3.6.5.3.2, 
3.6.5.3.2.1.4) if necessary. 
Thus, a sending node SHOULD NOT push an up-to-date MPAN before sending an S2 Multicast frame to 
a new S2 Multicast receiver. 

A sending node MUST maintain the MPAN inner state according to Table 9. 

Table 9, Sending node MPAN maintenance 

Frame type Description MPAN increase 

after transmission 

S2 Singlecast S2 SC frame 0 

S2 Unacknowledged 
Multicast 

S2 MC frame 
1 

S2 Acknowledged 
Multicast 

S2 MC frame followed by an S2 SC-F frame to each S2 
Multicast group member. 

2 

 
A receiving node MUST maintain the MPAN inner state according to Table 10. 

Table 10, Receiving node MPAN maintenance 

Frame type Description 
MPAN increase 

after reception 

S2 Singlecast S2 SC frame 0 

S2 Multicast S2 MC frame 1 

S2 Singlecast Follow-up S2 SC-F frame 1 

 
If the Receiver is unable to decrypt the S2 MC frame with the current MPAN, the Receiver MAY try 
decrypting the frame with one or more of the subsequent MPAN values, stopping when decryption is 
successful or the maximum number of iterations is reached.  

The maximum number of iterations performed by a receiving node MUST be 5. 

If the maximum number of iterations is reached without successful decryption, the MOS flag MUST be 
set for the actual Group ID. The MOS state is reported back to the sending node only if the node 
receives a SC-F for the actual group. 

An always listening node MUST support being member of at least 5 multicast groups at the same time 
(5 MPAN table entries) 

MPAN synchronization and state maintenance examples are given in Figure 17 and Figure 18. 
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Figure 17, Next MPAN calculation example 



 Z-Wave Transport-Encapsulation Command Class Specification  

 

© 2021 Z-Wave Alliance, Inc., All Rights Reserved  Page  69 
 

 
Figure 18, Multicast communication example with receivers out of sync and Supervision 

Figure 18 shows Node C returning a Supervision Report with the MOS extension after the Supervision 
encapsulated Singlecast follow-up. In this case, a node MUST NOT return a Nonce Report with the MOS 
flag and subsequently another frame carrying the Supervision Report.  

The following behavior is REQUIRED when a node is in MOS state and receives a Singlecast Follow-up:  

• If the Singlecast Follow-up uses Supervision encapsulation, the receiving node MUST return a 
Supervision Report with the MOS extension. 

• If the Singlecast Follow-up does not use Supervision encapsulation, the receiving node MUST 
return a Nonce Report with the MOS field set to 1. 
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3.6.5.2.1 MPAN table 
A node SHOULD maintain the information indicated in Table 11 for each multicast group. The actual 
implementation format is out of scope of this specification. 

Table 11, MPAN table entry, example 

Information Description 

Owner NodeID The NodeID of the node distributing this MPAN  (rx only) 

Group ID Unique ID chosen by the owner node    

MPAN Inner state MPAN inner state used for encryption and decryption  

MPAN entry 
state 

MPAN_FREE: This entry is currently not in use   
MPAN_USED: This entry is currently in use   

MPAN_MOS: This entry is out of sync    

  Waiting to send Nonce Report in  
  response to singlecast follow-up 

 

A supporting node MUST support at least 1 multicast session as a receiver (1 MPAN table entry).  

3.6.5.2.2 Adding an S2 Multicast group member 
A group member can be added to a S2 Multicast group by sending a Singlecast follow-up message to 
the new NodeID after a S2 Multicast message. The newly added NodeID will notify the sender that it is 
not synchronized for the given Group ID and it will be synchronized when receiving the next singlecast 
frame. 

S2 Multicast will not work with sleeping nodes A sending node SHOULD NOT try to add sleeping nodes 
to a Multicast group. 

3.6.5.2.3 Removing an S2 Multicast group member 
A node can be removed from an S2 Multicast group by shuffling the MPAN state. At the next S2 
Multicast frame, the newly removed node will set in MOS state and wait for re-synchronization in the 
next singlecast messages. When the newly removed node receives subsequent singlecast messages 
without MPAN extension, the newly removed node MUST forget about the Multicast group ID. 

3.6.5.2.4 Handling a missing S2 Multicast frame 
An S2 MC frame may be missing due to simple radio interference or a deliberate delay attack. 

In either case, the MPAN needs to be re-synchronized. Further, the MPAN needs to be advanced 
immediately to close the time window where an attacker can replay the stolen S2 MC frame. 

The transmission of a singlecast follow-up frame ensures re-synchronization and prevents a potential 
delay attack. Figure 17 outlines an example of the MPAN state changes when an S2 MC frame is 
missing. 

In the case both multicast and singlecast follow-up frames are intercepted for a delay attack, the 
attacker has the possibility to replay the multicast frame at a later time. Using the Supervision 
Command Class in singlecast follow-up frames prevent this attack as the receiving node needs to report 
the application level status in a new singlecast frame. 

3.6.5.3 Message encapsulation commands 
This section presents the commands of the Security 2 Command Class used for message encapsulation. 
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3.6.5.3.1 Security 2 Nonce Get Command 
This command is used to request a fresh Nonce. 

The Security 2 Nonce Report Command MUST be returned in response to this command. 

A node sending this command MUST accept a delay up to <Previous Round-trip-time to peer node> + 
250 ms before receiving the Security 2 Nonce Report Command. 

This command MUST NOT be issued via multicast addressing. 
A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Security Header = SECURITY_2_NONCE_GET 

Sequence Number 

 

Sequence Number (1 byte) 

A sending node MUST specify a unique sequence number starting from a random value. Each message 
MUST carry an increment of the value carried in the previous outgoing message.  

A receiving node MUST validate the Sequence Number and the actual sender’s NodeID before accepting 
this command. 

A receiving node MUST use this field for duplicate detection. Refer to section 3.6.5.4. 

3.6.5.3.2 Security 2 Nonce Report Command 
This command is used to advertise a fresh Nonce in preparation for secure communication. This 
command MUST NOT be issued unless it is done in response to the S2 Nonce Get or the S2 Message 
Encapsulation Command. 

A sending node MUST set at least one of the MOS and SOS flags to the value ‘1’ in this command. 
The command MUST NOT be sent if both the MOS and SOS flags are cleared. 

A receiving node MUST update the MPAN and/or SPAN of the node sending this command by adding a 
SPAN and/or MPAN extension to the next Security 2 Message Encapsulation Command.  

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Command = SECURITY_2_NONCE_REPORT 

Sequence Number 

Reserved MOS SOS 

Receiver’s Entropy Input Byte 1 (Optional) 

… 

Receiver’s Entropy Input Byte 16  (Optional) 
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Sequence Number (1 byte) 

A sending node MUST specify a unique sequence number starting from a random value. Each message 
MUST carry an increment of the value carried in the previous outgoing message.  

A receiving node MUST use this field for duplicate detection. Refer to section 3.6.5.4. 

Reserved 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

SOS – SPAN out of Sync (1 Bit) 

When set by a sending node, the value ‘1’ MUST indicate that the sending node does not have a SPAN 
established for the receiving node or was unable to decrypt the most recently received singlecast 
Security 2 Message Encapsulation Command from the destination of this command.  

The value ‘0’ MUST indicate that there was no problem decrypting the most recently received singlecast 
Security 2 Message Encapsulation Command.  

If the SOS flag is set to ‘1’, the REI field MUST be included in the command. 
If the SOS flag is set to ‘0’, the REI field MUST NOT be included in the command. 

A receiving node MUST establish a new Singlecast Pre-Agreed Nonce (SPAN) and return a Security 2 
Message Encapsulation Command with the SPAN extension, if this flag is set to ‘1’ by a sending node. 

MOS – MPAN Out of Sync (1 Bit) 

When set by a sending node, the value ‘1’ MUST indicate that the sending node does not have a MPAN 
state for Multicast group used in the most recently received singlecast follow-up Security 2 Message 
Encapsulation Command from the destination of this command.  

The value ‘0’ MUST indicate that there was no problem decrypting the most recently received multicast 
Security 2 Message Encapsulation Command that was followed by a singlecast follow-up.  

A sending node MUST NOT advertise the MOS flag for a given (source NodeID, Group ID) tuple more 
than one time. 

If this flag is set to ‘1’ by a sending node, a receiving node MUST transfer the Multicast Pre-Agreed 
Nonce (MPAN) of the most recent singlecast follow-up transmission in a subsequent singlecast message 
if the sending node belongs to the multicast group. The MPAN MUST be transferred by sending a 
singlecast Security 2 Message Encapsulation Command with the MPAN extension.  

Receiver’s Entropy Input (REI) (16 Bytes) 

This field is optional. When present, this field is used to carry the Receiver’s Entropy Input in 
preparation for new S2 transmissions based on the SPAN. Refer to 3.6.5.1. 

If the SOS flag is set to ‘1’, the REI field MUST be included in the command. 
If the SOS flag is set to ‘0’, the REI field MUST NOT be included in the command. 

1.1.1.1.1 Security 2 Message Encapsulation Command 

The Security 2 Nonce Report Command MUST be returned in response to this command if the receiving 
node fails decrypting the command or if the message contains an MGRP extension with a Group ID that 
is unknown or out of sync (MOS). 
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This command MAY be issued via Z-Wave Multicast addressing. 
A receiving node MUST NOT return a response if this command is received via Z-Wave Multicast 
addressing. The Z-Wave Multicast frame and the broadcast NodeID are both considered Z-Wave 
Multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Security Header = SECURITY_2_MESSAGE_ENCAPSULATION 

Sequence Number 

Reserved Encrypted 
Extension 

Extension 

Extension 1 Length 

More to 
follow 

Critical                       Extension 1 Type 

Extension 1 Byte 1 

… 

Extension 1 Byte K 

Extension 2 Length 

More to 
follow 

Critical                       Extension 2 Type 

Extension 2 Byte 1 

… 

Extension 2 Byte L 

Encrypted Extension 1 Length 

More to 
follow 

Critical              Encrypted Extension 1 Type 

Encrypted Extension 1 Byte 1 

… 

Encrypted Extension 1 Byte M 

Encrypted Extension 2 Length 

More to 
follow 

Critical              Encrypted Extension 2 Type 

Encrypted Extension 2 Byte 1 

… 

Encrypted Extension 2 Byte N 

CCM Ciphertext object Byte 1 

… 

CCM Ciphertext object byte  P 
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Sequence Number (1 byte) 
A sending node MUST specify a unique sequence number starting from a random value. Each new 
message MUST carry an increment of the value carried in the previous singlecast command.  

A receiving node MUST use this field for singlecast duplicate detection. Refer to section 3.6.5.4. 

Reserved 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 
However, the value MUST be used as part of the AAD input (3.6.4.5.1) used for authentication of the 
frame by the sending node as well as the receiving node. 

Extension (1 bit)  

This field is used to indicate if one or more non-encrypted extensions are included. 

The value ‘1’ MUST indicate that non-encrypted extensions are included.  
The value ‘0’ MUST indicate that non-encrypted extensions are not included. 

Refer to the Extension object field description. 

Encrypted Extension (1 bit)  

This field is used to indicate if one or more encrypted extensions are included. 

The value ‘1’ MUST indicate that encrypted extensions are included.  
The value ‘0’ MUST indicate that encrypted extensions are not included. 

Refer to the Encrypted Extension object field description. 

[Extension Object] (N instances) 

7 6 5 4 3 2 1 0 

Extension Length 

More to 
follow 

Critical Type 

Extension Byte 1 

… 

Extension Byte L 

 
 Extension Length (1 byte) 

 This field specifies the length of this extension, in bytes, including the “Extension Length” field. 

 Type (6 bit) 

 This field defines the type of this extension. Valid extension types are listed in 1.1.1.1.1.1. 

 Critical (1 bit) 

A receiving node MUST discard the entire command if this flag is set to ‘1’ and the Type field 
advertises a value that the receiving node does not support.  

If this flag is set to ‘0’ and the Type field advertises a value that the receiving node does not 
support, the actual extension MUST be ignored.  
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A receiving node SHOULD continue processing of the encapsulation command after the 
discarded extension. 

 More to Follow (1 bit) 

If the More to Follow flag is set to ‘1’, another Extension Object MUST follow this Extension 
Object. 

 Extension (Variable length) 

This field carries the actual extension. Refer to 1.1.1.1.1.1.The length of this field MUST comply 
with the length specified in the Extension Length field of this Extension Object. 

[Encrypted Extension Object] (N instances) 

The format of this object is identical to the unencrypted Extension Object. However, this object MUST 
be part of the encrypted payload. 

CCM Ciphertext Object (P bytes) 

This field contains an encrypted message. It comprises: 

• (Optional) Complete Z-Wave command (comprising Command Class Identifier, Command 
Identifier and optional command payload) 

• CCM control data  

• CCM authentication tag. 

The preceding Encrypted Extension fields are technically also a part of the CCM ciphertext object. But 
conceptually they are separate from the message and have been described as such. 

1.1.1.1.1.1 Valid Extensions and Encrypted Extensions 

The defined extension types are listed in Table 12. 

Table 12, Security 2 Encapsulation Command::Extension Types 

Extension Type 
Identifier 

Format Content protection 

0x01 SPAN Extension Not Encrypted 

0x02 MPAN Extension Encrypted 

0x03 MGRP Extension Not Encrypted 

0x04 MOS Extension Not Encrypted 

All other values are reserved and MUST NOT be used by a sending node. Reserved values MUST be 
ignored by a receiving node. 

3.6.5.3.2.1.1 SPAN Extension 
The SPAN Extension is used by the sender to establish a SPAN by sending a Sender’s Entropy Input to 
the Receiver. The combined Sender’s and Receiver’s Entropy Input may then be passed through the 
NextNonce function to generate the SPAN. 

This extension MUST be sent unencrypted. 
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7 6 5 4 3 2 1 0 

Length = 18 

More to 
follow 

Critical 
= 1 

Type = SPAN Extension = 1 

Sender’s Entropy Input Byte 1 

… 

Sender’s Entropy Input Byte 16 

 
Length (1 byte) 

This field MUST be set to 18. 

Type (6 bits) 

This field MUST be set to the SPAN Extension type (1). 

Critical (1 bit) 

This flag MUST be set to ‘1’. 

More to Follow (1 bit) 

If this flag is set to ‘1’, another unencrypted Extension Object MUST follow this unencrypted Extension 
Object. 
If this flag is set to ‘0’, this MUST be the last unencrypted Extension Object. 

Sender’s Entropy Input (16 bytes) 

This field MUST carry the entropy input contribution used to instantiate a NextNonce Generator. 

3.6.5.3.2.1.2 MPAN Extension 
The MPAN Extension is used by the sender to establish or update an MPAN by sending the full 16 bytes 
MPAN state to the receiver to enable the reception of encrypted multicast transmissions. 

This extension MUST be sent encrypted. 

7 6 5 4 3 2 1 0 

Length = 19  

More to 
follow 

Critical 
= 1 

Type = MPAN Extension = 2 

Group ID 

Inner MPAN state Byte 1 

… 

Inner MPAN state Byte 16 

 
Length (1 byte) 

This field MUST be set to 19. 

Type (6 bits) 

CC:009F.01.03.11.00F 

CC:009F.01.03.11.010 

CC:009F.01.03.11.011 

CC:009F.01.03.11.012 

CC:009F.01.03.11.013 

CC:009F.01.03.11.014 

CC:009F.01.03.11.015 



 Z-Wave Transport-Encapsulation Command Class Specification  

 

© 2021 Z-Wave Alliance, Inc., All Rights Reserved  Page  77 
 

This field MUST be set to the MPAN Extension type (2). 

Critical (1 bit) 

This flag MUST be set to ‘1’. 

More to Follow (1 bit) 

If this flag is set to ‘1’, another encrypted Extension Object MUST follow this encrypted Extension 
Object. 
If this flag is set to ‘0’, this MUST be the last encrypted Extension Object. 

Group ID (1 byte) 

This field is used to identify MPAN instances. A sending node MUST set this value to the Group ID of the 
most recently transmitted multicast frame. The value MUST be in the range 0..255.  

A sending node creating a new group SHOULD NOT use the value 0. 

A receiving node MUST use this value in combination with the Owner NodeID for identifying the correct 
MPAN table entry when an MPAN table entry to use for frame decryption or MPAN updates. 

If a receiving node already has an MPAN for the actual Group ID, that MPAN MUST be updated.  
If this is a new Group ID, the new information MUST be stored. This may require the deletion of another 
MPAN table entry. It is RECOMMENDED that the least recently used entry is deleted. 

Inner MPAN state (16 bytes) 

This field carries the value to be used in the encryption and decryption of the next S2 Multicast frame.   

3.6.5.3.2.1.3 MGRP Extension 
The Multicast Group (MGRP) Extension MUST be included in all S2 Multicast and S2 Singlecast follow-up 
frames.  

A receiving node MUST use the Group ID to select the MPAN for decrypting this message.  
When receiving this extension, the matching MPAN (if found) MUST be incremented by one after 
decryption.  
If the Group ID is not found in the receiver MPAN table and the received frame is a singlecast (follow-
up), the node MUST return a Nonce Report with the MOS flag set, or alternatively, return another 
Security 2 Message Encapsulation Command with the MOS extension included. 

This extension MUST NOT be sent together with the MPAN extension. 

This extension MUST be sent unencrypted. 

7 6 5 4 3 2 1 0 

Length = 3 

More to 
follow 

Critical 
= 1 

Type = MGRP Extension = 3 

Group ID 

 

Length (1 byte) 

This field MUST be set to 3. 

Type (6 bits) 
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This field MUST be set to the MGRP Extension type (3). 

Critical (1 bit) 

This flag MUST be set to ‘1’. 

More to Follow (1 bit) 

If this flag is set to ‘1’, another unencrypted Extension Object MUST follow this unencrypted Extension 
Object. 
If this flag is set to ‘0’, this MUST be the last unencrypted Extension Object. 

Group ID (1 byte) 

This field is used by the sender to uniquely identify which MPAN was used to encrypt this multicast 
frame.  

3.6.5.3.2.1.4 MOS Extension 
The MOS extension is used to indicate that the sending node does not have a MPAN state for the 
Multicast group used in the most recently received singlecast follow-up Security 2 Message 
Encapsulation Command from the destination of this command 

The receiver MAY choose to re-synchronize the sending node by returning a new Security 2 Message 
Encapsulation Command with a MPAN extension included. 

This extension MUST be sent unencrypted. 

7 6 5 4 3 2 1 0 

Length = 2  

More to 
follow 

Critical 
= 0 

Type = MOS Extension = 4 

 
Length (1 byte) 

This field MUST be set to 2. 

Type (6 bits) 

This field MUST be set to the MOS Extension type (4). 

Critical (1 bit) 

This flag MUST be set to ‘0’. 

More to Follow (1 bit) 

If this flag is set to ‘1’, another unencrypted Extension Object MUST follow this unencrypted Extension 
Object. 
If this flag is set to ‘0’, this MUST be the last unencrypted Extension Object. 

3.6.5.4 Duplicate Message Detection 
A sending node MUST set the Sequence Number to a random value on startup. The Sequence Number 
MUST be incremented for the transmission of each new unique singlecast (and singlecast follow-up) 
transmission. 
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A receiving node MUST use the Sequence Number field in the Nonce Get, Nonce Report and Message 
Encapsulation commands for duplicate detection. 
Duplicates of recently received commands MUST be discarded. 

The following algorithm SHOULD be used for duplicate detection of singlecast messages: 

1. If an incoming sequence number and Peer NodeID match an entry in the SPAN table, the frame 
MUST be discarded. 

2. If it is a new sequence number, the received sequence number and Peer NodeID MUST be 
stored in the SPAN table. 

3.6.6 Key Management 
S2 communication relies on two separate derived keys that MUST be shared between any nodes 
communicating with each other; the combined Encryption and Authentication Key denoted KeyCCM 

and the CTR_DRBG Key denoted PersonalizationString. Both keys MUST be derived from one 
Network Key that is exchanged between the nodes using the CKDF-NetworkKeyExpand function 
detailed in 3.6.4.8.4.  

In S2, not all nodes share the same network key. S2 separates devices into different Security Classes, so 
that if one Security Class is compromised, it does not affect other Security Classes. The joining node 
MUST advertise the supported Security Classes during the S2 bootstrapping process.  
The including node MAY grant membership of one or more Security Classes.  
The joining node MUST then request the granted keys, one at a time. 

The Security Classes are listed in Table 13.  

S2 Access Control and S2 Authenticated Security Classes are equivalent from a technical perspective, 
but do not share the same network key. This is simply to prevent compromising the Access Control key 
if the Authenticated key is compromised. 

Client-side authentication is an alternative authentication mechanism intended for the authenticated 
security bootstrapping of devices which do not have a DSK. Refer to section 3.6.6.3. 
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Table 13, S2 Security Class Overview 

Value Class Name 
Example 
devices 

Controller authentication 
(refer to 3.6.6.2) 

Client-side authentication 
(refer to 3.6.6.3) 

Display DSK  Input DSK  Display DSK  Input DSK 

2 
S2 Access 
Control 

Door locks, 
Garage 
doors 

14 bytes 
5 decimal 
digits  
(2 bytes) 

12 bytes 
(Optional) 

10 decimal 
digits  
(4 bytes) 

None 
(QR code) 

QR code  
(16 bytes) 

None 
(QR code) 

QR code  
(16 bytes) 

1 
S2 
Authenticated 

Lighting and 
Sensors 

(Managed 
systems and 
security 
systems) 

14 bytes 
5 decimal 
digits  
(2 bytes) 

12 bytes 
(Optional) 

10 decimal 
digits  
(4 bytes) 

None 
(QR code) 

16 bytes 
(QR code) 

None 
(QR code) 

16 bytes 
(QR code) 

0 
S2 
Unauthenticate
d 

Lighting and 
Sensors 

(Unmanaged 
systems) 

0 to 16 bytes 0 0 0 

7 S0 
Legacy door 
locks 

N/A  N/A N/A  N/A 

All other values are reserved and MUST NOT be used by a sending node. Reserved values MUST be 
ignored by a receiving node. 

The manufacturer decides which classes are relevant to advertise for the intended use of the product. 
For instance: 

• A light dimmer device may advertise the S2 Unauthenticated Class and the S2 Authenticated 
Class as the intended classes. If a constrained key fob without display is used to create a small 
system, the wall controller may grant only the S2 Unauthenticated Class to the light dimmer, 
which then requests only the S2 Unauthenticated Class key. 

• A light bulb may advertise the S2 Unauthenticated Class as its only intended class because it 
does not provide a DSK. Depending on the configured security level, an authentication capable 
gateway may accept including S2 Unauthenticated Class devices or it may reject including S2 
Unauthenticated Class-only devices.  

• A door lock device may advertise the S2 Access Control Class as its only intended class because 
it requires the highest protection level. A constrained key fob, which can grant only the S2 
Unauthenticated Class key, rejects including the door lock device and returns an error 
indication to the user because it cannot authenticate the door lock.  

3.6.6.1 Key Exchange 
The S2 key exchange MUST comply with Table 14. 
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Table 14, Key exchange and key verification 

Key 
to be exchanged 

Key to use for the 
Key Exchange 

Key to use for the 
Key Verification 

S2.2: Access Control ECDH Temporary Key S2.2 

S2.1: Authenticated ECDH Temporary Key S2.1 

S2.0: Unauthenticated ECDH Temporary Key S2.0 

S0 ECDH Temporary Key S0 

 
A number of Security Class keys may be granted to the joining node. A temporary key and SPAN MUST 
be used for the exchange of the Security Class keys.  
The temporary SPAN MUST be initialized with the Shared Nonce that is established after the S2 
temporary key is established.  
The SPAN value MUST be updated after each Security Class key exchange. 

Verification of an assigned key (including S0) MUST always use the newly exchanged key to encrypt the 
S2 verification message. 

If a joining node is unsuccessful requesting all the Security Class keys that it was granted, the node 
MUST abort the S2 bootstrapping entirely.  

The S0 key can be exchanged with the Security 0 Command Class or with the Security 2 Command Class. 
The S0 message encapsulation MUST be done with the Security 0 Command Class encapsulation 
Command after S2 bootstrapped is completed. 

 

3.6.6.2 ECDH key pairs, Device Specific Key and User Verification 
A Device Specific Key (DSK) is used to protect against man-in-the-middle attacks (MITM) where a 
malicious attacker tries to intercept and manipulate the key exchange. 

A node supporting S2 MUST have a first Learn Mode ECDH key pair: 

• This key pair is used for joining a network both with and without authentication during S2 
Bootstrapping. However, if the node also has a second Learn Mode ECDH key pair, then the first 
key pair is only used when the S2 Bootstrapping requires authentication. 

• This key pair MUST be static. 
 
A node supporting S2 MAY have a second Learn Mode ECDH key pair: 

• This key pair is used for joining a network when the S2 Bootstrapping does not require 
authentication.  

• This key pair MAY be dynamic. 

• This key pair is deprecated. 
 
Additionally, a node able to perform S2 bootstrapping MUST have an additional separate Add Mode 
ECDH key pair: 
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• This key pair is used for adding nodes into a network (controller side). 

• This key pair MUST be dynamic. 

A unique Authenticated Learn Mode ECDH key pair MUST be assigned to each individual node, if they 
request an Authenticated Security Class. 

A node MAY create a new Unauthenticated Learn Mode ECDH key pair for every S2 bootstrapping 
attempt. 

A node MUST keep the same Authenticated Learn Mode ECDH key pair for the lifetime of the node. 

The DSK is defined as the first 16 bytes of the Authenticated ECDH Public Key of a node. An S2 node 
MUST respect the DSK requirements listed in [8]. 

The DSK may be used for out-of-band (OOB) authentication in two ways.  

• The including controller uses QR code scanning to read the entire DSK off the joining device and 
match it with the obfuscated public key received via RF from the joining device. 

• Else the including controller asks the user to visually validate that the rest of the DSK matches 
with the Public Key received via RF. The including controller additionally asks the user to enter 
the PIN code (the 5 first digits of the DSK string) in order to substitute the obfuscated bytes of 
the joining node’s Public Key.  

An including controller with support for the S2 Authenticated Class or the S2 Access Control Class 
SHOULD provide a QR code scanning capability for user friendly inclusion.  
If scanning capability is not available, the including controller MUST provide an interface that allows the 
user to enter a 5-digit PIN code and perform visual DSK string validation.  
The requested PIN code MUST be the first 5 decimal digits of the DSK string. 

3.6.6.3 Client-Side Authentication 
When upgrading existing devices to support Security 2 through an over-the-air (OTA) firmware update, 
there is no DSK printed on the node and the upgraded node MUST therefore generate its public key and 
DSK internally with the updated firmware. 

A device MAY request the use of Client-Side authentication (CSA) if it does not possess a DSK label. If 
the joining node requests CSA, the including controller MUST ask the user if this should be permitted, 
and if permitted, the including controller MUST display its own DSK. 

As stated in Table 13, the first 10 digits MUST be input on the Joining Node, meaning it MUST have a 
method of input, like a keypad. 

Compared to controller-side authentication where the entire DSK MUST also be visually verified, CSA 
does come with a higher risk of having the bootstrapping attempt manipulated by an attacker. The 
attacker, however, has to guess 4 random bytes in one attempt. 

3.6.6.4 Initial Key Exchange 
Add mode MUST be initiated physically. Physical activation includes button press, applying power, 
remote user activation, etc.  

Initial Key Exchange MUST be carried out using the ECDH temporary key with the including controller. 

The Including Node A MUST create a new Add Mode ECDH Key Pair for each new bootstrapping process 
(regardless of the outcome of each bootstrapping attempt), if it supports the S2 Access Control and/or 
S2 Authentication Security Classes.  

The Key Exchange process MUST follow the frame flow illustrated in Figure 19.  
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Figure 19, S2 bootstrapping frame flow 
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The key exchange MUST comply with the following steps: 

1. Network inclusion completed:  
Immediately following a successful network inclusion or after receiving an Inclusion Controller 
Initiate Command (refer to [15]), the Security 2 enabled controller A MUST start the S2 
bootstrapping 

2. A->B : KEX Get :  
Including Node A, requests KEX Report from Joining Node B. 

3. B->A : KEX Report :  
Sent as response to the KEX Get command, this command contains: 

a. Scheme Report – Schemes supported by Node B 
b. Curve Report – Elliptic Curves supported by Node B 
c. Requested Key List  – List of Keys (such as S2 Class keys and Security 0 Network Key) 

which is requested by Node B 
d. Request for Client-Side authentication 

4. A1:  
Node A MUST verify the KEX Report and, if required, cancel the S2 bootstrapping as described 
in Section 3.6.6.4.1.  

a. Optional: Node A MAY present a dialog allowing the installer to select which specific 
keys will be granted to Node B. If presented, the installer MUST either confirm a list of 
granted keys or cancel the security bootstrapping. 

b. If Client-Side authentication is requested and Node A supports inclusion using CSA, 
Node A MUST present a dialog asking if Client-Side authentication should be allowed. 

i. If Client-Side authentication is used, Node A MUST subsequently present a 
dialog with its own DSK.  

ii. Node A MAY reject Client-Side authentication. In this case, Node A MUST either 
abort the S2 bootstrapping with a KEX_FAIL_CANCEL or only grant a subset of 
keys that does not require CSA, e.g. Security 0 and Unauthenticated.  

5. A->B : KEX Set : 
The KEX Set Command contains parameters selected by Node A. The list of class keys MAY be 
reduced to a subset of the list that was requested in the previous KEX Report from Node B. 

a. Scheme Set – The selected Scheme by Node A for bootstrapping 
b. Curve Set – The selected Curve by Node A for bootstrapping 
c. Key List Set – The list of granted keys to Node B by Node A 
d. Client-Side authentication – Indicating whether Client-side authentication will be used 

6. B1:  
Node B MUST verify the KEX Set command and, if required, cancel security bootstrapping as 
described in Section 3.6.6.4.1 

a. Optional: Node B MAY present the Node A’s DSK for verification or input. If presented, 
installer MUST either confirm or cancel security bootstrapping. This step MAY also be 
carried out in step B2 instead is CSA is used. 

b. Node B MUST accept what it has been granted, even if it is only a subset of what was 
requested. 

c. If Node A wrongfully grants CSA without being requested, Node B MUST cancel security 
bootstrapping. 

7. B->A : Public Key B :  
Public Key B is the ECDH Public Key of Node B and is used for the ECDH Key Exchange.  
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a. If Authentication is required (KEX Set granted an Authenticated Security Class):  
Node B MUST use its Authenticated ECDH Public key and the DSK bytes 1..2 MUST be 
obfuscated by zeros. 

b. If Authenticated is not required (KEX Set granted no authenticated Security Class):  
Node B MUST use its Unauthenticated ECDH Public Key and transmit the full key non-
obfuscated. 

8. A2:  
If authentication is required, Node A MUST request that the user enters the PIN code or scans 
the QR code from Node B in order to verify the DSK (refer to 3.6.6.2 and 3.6.6.4.1). 

a. If Node A was input a PIN code, it MUST substitute the bytes 1 and 2 of the Node B 
public key with the 2 bytes received in the PIN code. The user MUST be prompted a 
dialog to visually validate the bytes 3..16 of Node B’s DSK. 

b. If Node A has received the 16 bytes DSK of Node B via QR scanning, it MUST substitute 
the first 16 bytes of Node B’s Public Key with the 16 bytes received via QR code. 

c. Node A SHOULD continue verifying the DSK input until A3 to allow ECDH calculations to 
take place while the user is verifying the DSK. 

9. A->B : Public Key A :  
Public Key A is the Elliptic Curve Public Key of Node A and will be used for the temporary ECDH 
Key Exchange. 

a. Mandatory: If Client-Side authentication is used, the DSK bytes 1..4 MUST be  
obfuscated by zeros. 

10. B2:  
a. Mandatory: If Client-Side authentication is used, the DSK MUST be input on Node B. 

i. If Node B was input a PIN code, it MUST substitute the 4 first bytes of Node A’s 
Public Key with the 4 bytes received in the PIN code. The user MAY be 
prompted a dialog to visually validate the bytes 5..16 of Node A’s DSK. 

ii. If Node B has received the 16 bytes DSK of Node A via QR scanning, it MUST 
substitute the first 16 bytes of Node A’s Public Key with the 16 bytes received 
via QR code 

11. Elliptic Curve Shared Secret Established:  
If B2 is passed, Node A and Node B have performed an ECDH Key Exchange, resulting in an 
Elliptic Curve Shared Secret. 

12. Temporary Symmetric Key Established:  
Both Node A and Node B derive a Temporary Symmetric Key from the ECDH Shared Secret 
based on CKDF-TempExpand (refer to 3.6.4.8.2).  

13. B->A : Nonce Get :  
Node B requests a Nonce from Node A that will allow Node B to send messages securely using 
the Temporary Symmetric Key. 

14. A->B : Nonce Report : 
A’s Nonce 

15. From this point all frames sent between Node A and Node B MUST be encrypted using the ECDH 
Temporary Symmetric Key (With the exception of Nonce Get / Report for each Security Class 
which MUST NOT be encrypted and the Network Key Verify Command, which MUST be 
encrypted with the most recently exchanged key. Refer to Section 3.6.6.1). 

16. B->A : KEX Set (echo) :  
The KEX Set command received from Node A in step 5 is confirmed via the temporary secure 
channel.  

a. The frame MUST be retransmitted by node B every 10 seconds for 240 seconds in total 
until either event is detected: 
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i. Step 17, KEX Report(Echo) is received 
ii. KEX Fail is received 

b. If neither events are detected after 240 seconds, Node B times out and aborts S2 
bootstrapping silently 

17. A3:  
Node A MUST abort S2 bootstrapping if the KEX Set(Echo) received in step 16is not identical to 
KEX Set previously sent by Node A in step 5. Refer to Section 3.6.6.4.1.  

18. A->B : KEX Report (echo) :  
The KEX Report Command received from Node B in step 3 is confirmed via the temporary 
secure channel. 

19. B3:  
Node B MUST abort S2 bootstrapping if the KEX Report(Echo) received in step 18 is not identical 
to KEX Report previously sent by Node B in step 3. Refer to Section 3.6.6.4.1. 
If a Node B node has been granted zero keys, Node B MUST go to step 30 and indicate to Node 
A that it is terminating the bootstrapping process by returning an S2 Transfer End Command. 
Node A and Node B will consider Node B to be included non-securely at the end of the 
bootstrapping.  

Authentication has been completed, and network key exchange begins. Steps 20 through 29 MUST be 
repeated for each network key Node A has granted. Key Exchange MUST follow the order described in 
Section 3.6.6.1. 

20. B->A : Security 2 Network Key Get:  
Node B requests a specific Key from Node A.  

21. A4:  
Node A MUST cancel the S2 bootstrapping if the requested key is not in the Key List granted by 
Node A. 

22. A->B :Security 2 Network Key Report:  
This command returns the requested key. 

23. B4:  
Node B MUST cancel security bootstrapping if the received key was not requested. Refer to 
3.6.6.4.1.  
After receiving the key, Node B MUST perform key derivation as described in 3.6.4.8.4 

24. Security 2 Network Key Established:  
Node A and Node B are now in possession of a shared network key. 

25. B->A : Nonce Get :  
Node B requests a Nonce from Node A that will allow Node B to send messages securely using 
the recently exchanged Network Key. 

26. A->B : Nonce Report : 
A’s Nonce 

27. B->A : Security 2 Network Key Verify :  
This command MUST be sent encrypted by Node B with the newly received Network Key and 
the recently established SPAN for this key 

28. A5:  
Node A MUST verify that it can successfully decrypt the Key Verify command using the newly 
exchanged key. 

29. A->B : Security 2 Transfer End:  
If Node A is able to decrypt and verify the Key Verify command, it MUST respond with Security 
2 Transfer End with the field “Key verified” set to ‘1’. 

a. If there are more granted keys to request, Node B continues to step 20 and requests 
the next granted key 
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b. If it was the last granted key, Node B continues to step 30. 
All Keys have been requested. 

30. B->A : Security 2 Transfer End :  
When Node B has no more keys to request it MUST finish the secure setup by sending a 
Security 2 Transfer End command with the field “Key Request Complete” set to ‘1’. 

a. If this frame is received before all keys have been requested, the controller MUST 
consider the S2 Bootstrapping process failed. 

All timeouts described in Section 3.6.6.4.2 MUST be implemented. If a node times out, it MUST silently 
abort the S2 bootstrapping. 
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3.6.6.4.1 Security 2 bootstrapping Interrupt Points 
The including node and the joining node MUST interrupt the Security 2 bootstrapping process if any of 
the events outlined in Table 15 occur. 

Table 15, Security 2 bootstrapping Interrupt Points 

Including Node Interrupts, A1-5 

Name Interrupt Reason KEX Fail 
Command 
Encryption 

KEX Fail Type (see description 
in Table 20) 

A1 Key List is invalid or unsupported 

KEX Scheme is invalid or unsupported 

Curves are invalid or unsupported. 

User rejects the requested keys 

None KEX_FAIL_KEX_KEY 

KEX_FAIL_KEX_SCHEME 

KEX_FAIL_KEX_CURVES 

KEX_FAIL_CANCEL 

A2 User cancelled the bootstrapping. None KEX_FAIL_CANCEL 

A3 KEX Set(Echo) is not identical to the 
previous KEX Set 

Temp. Key KEX_FAIL_AUTH 

KEX_FAIL_DECRYPT 

A4 The requested Key was not granted in 
the original KEX Set 

Temp. Key KEX_FAIL_KEY_GET 

 

A5 The Key Verify Command cannot be 
decrypted using most the recent key 

Temp. Key KEX_FAIL_KEY_VERIFY 

 

Joining Node Interrupts, B1-4 

Name Interrupt Reason KEXFail 
Command 
Encryption 

KEX Fail Type (see description 
in Table 20) 

B1 Key List is invalid or unsupported 

KEX Scheme is invalid or unsupported 

Curves are invalid or unsupported 

Node A wrongfully grants CSA 

None KEX_FAIL_KEX_KEY 

KEX_FAIL_KEX_SCHEME 

KEX_FAIL_KEX_CURVES 

KEX_FAIL_KEX_KEY 

B2 If using CSA, user cancelled the 
bootstrapping 

- KEX_FAIL_CANCEL 

B3 KEX Report(Echo) is not identical to the 
previous KEX Report 

Temp. Key KEX_FAIL_AUTH 

KEX_FAIL_DECRYPT 

B4 The assigned key was never requested. Temp. Key KEX_FAIL_KEY_REPORT 

 
An aborted Security 2 bootstrapping process due to one of the interrupt points in Table 15 SHOULD be 
followed by a Security 2 KEX Fail Command sent to the other party of the S2 bootstrapping. 
If sent, encryption MUST be used according to Table 15. 
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If a command is received using a Security level (non-secure, encrypted with temporary or network key) 
whereas the command had to be sent encrypted using another Security level, the receiving node 
SHOULD return a Security 2 KEX Fail Command with the KEX_FAIL_AUTH Fail Type encrypted using the 
received security level. 

In any case, a node MUST NOT return any error indication if no S2 bootstrapping process is currently 
ongoing. 

3.6.6.4.2 Security 2 bootstrapping Timeouts 
The including Node or the joining node MUST apply timeouts according to Table 16. 

Table 16, Security 2 bootstrapping Timeouts 

Including Node Timers, TA1-7 

Name Interrupt Reason Timeout (Seconds) 

TA1 KEX Report MUST be received after sending KEX 
Get 

10 

TA2 Public Key Report MUST be received after sending 
KEX Set 

10 

TA3 S2 Network Key Get MUST be received after 
sending KEX Report(Echo) 

10 

TA4 S2 Network Key Verify MUST be received after 
sending S2 Network Key Report 

10 

TA5 S2 Transfer End OR S2 Network Key Get MUST be 
received after sending S2 Transfer End 

10 

TAI1 User MAY change Key List for Advanced Joining 
mode 

240 

TAI2 User MUST have verified / input the DSK 240 

Joining Node Timers, TB1-7 

Name Description Timeout (Seconds) 

TB1 KEX Get MUST be received after non-secure 
inclusion 

10..30 for nodes supporting S0 

30 for nodes supporting S2 only  

TB2 KEX Set MUST be received after sending KEX Report 240 

TB3 Public Key Report MUST be received after sending 
Public Key Report 

10 

TB4 S2 Network Key Report MUST be received after 
sending S2 Network Key Get 

10 

TB5 S2 Transfer End MUST be received after sending S2 
Network Key Verify 

10 

TBI1 If Client-Side Authentication is used, the user MUST 
have verified / input the DSK 

240 

10 seconds timeouts MUST be observed with a 2 seconds tolerance. In this case, a node MUST time out 
between 8 and 12 seconds. 
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30 seconds timeouts MUST be observed with a 5 seconds tolerance. In this case, a node MUST time out 
between 25 and 35 seconds. 
240 seconds timeouts MUST be observed with a 10 seconds tolerance. In this case, a node MUST time 
out between 230 and 250 seconds. 

3.6.7 Security 2 Key Exchange commands 

3.6.7.1 Security 2 KEX Get Command 
This command is used by an including node to query the joining node for supported KEX Schemes and 
ECDH profiles as well as which network keys the joining node intends to request. 

This command MUST be ignored if Learn Mode is disabled. 

The KEX Report Command MUST be returned in response to this command if Learn Mode is enabled. 

This command MUST NOT be issued via multicast addressing. 

A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Command = KEX_GET 

 

3.6.7.2 Security 2 KEX Report Command 
This command is used for two purposes during the key exchange: 

1) This command is used by a joining node to advertise the network keys which it intends to 
request from the including node. The including node subsequently grants keys which may be 
exchanged once a temporary secure channel has been established. 

2) After establishment of the temporary secure channel, the including node uses this command to 
confirm the set of keys that the joining node intends to request. 

A receiving node MUST ignore this command if Add Node mode is not enabled. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Command = KEX_REPORT 

Reserved 
Request 

CSA 
Echo 

Supported KEX Schemes 

Supported ECDH Profiles 

Requested  Keys 

 
Reserved 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 
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Echo (1 bit) 

If this flag is set to ‘1’, the fields of this command MUST be a copy of the KEX Report received prior to 
the establishment of the temporary secure channel. All fields described in this section MUST be 
included in the echo. For the purpose of echoing only, reserved set bits and the reserved field MUST 
NOT be ignored or set to zero, but MUST be echoed back as received. If future versions of this 
Command Class append fields to the KEX Report, those fields MUST be omitted from the echo.  

If this flag is set to ‘1’, the command MUST be sent securely via the temporary secure channel, i.e. 
encrypted using the TempKeyCCM and TempPersonalizationString.  

The including node MUST NOT set this flag to ‘0’ when sending this command and MUST ignore this 
command if this flag is set to ‘1’ when received. 

The including node MUST return a KEX Set Command in response to this command if the “Echo” flag is 
set to ‘0’ and is performing S2 Bootstrapping.  

The joining node MUST NOT set this flag to ‘1’ when sending this command and MUST ignore this 
command if this flag is set to ‘0’ when received. 

Request CSA (1 bit) 

If this flag is set, the joining node is requesting the use of Client-side Authentication (CSA).  

This flag MUST be set to 0 if none of the S2 Authenticated and S2 Access Control Security Classes are 
requested 

This flag MUST be set to 0 if the sending node has a DSK label printed on itself. 

This flag MUST be set to 1 by a node only if it has been OTA firmware upgraded to support S2 and 
requests S2 Authenticated or S2 Access Control Security Class. 

Supported KEX Schemes (1 byte) 

This field is used to advertise the KEX Schemes supported by the node. 

The field MUST be treated as a bitmask and MUST comply with the format indicated in Table 17: 

Table 17, Supported KEX Schemes 

Bit KEX Scheme Description 

0, 2..7 Reserved Reserved 

1 KEX Scheme 1 
Indicates if Scheme 1 is supported 
(Security 2 Class Keys 0..2) 

All other bits are reserved and MUST be set to zero by a sending node.  

If the KEX scheme is supported the corresponding bit MUST be set to ‘1’. 
If the KEX scheme is not supported the corresponding bit MUST be set to ‘0’. 

A node supported the Security 2 Command Class MUST support KEX Scheme 1. 
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Supported ECDH Profiles (1 byte) 

This field is used to advertise the supported ECDH Profiles by the joining node 

The field MUST be treated as a bitmask and MUST comply with the format indicated in Table 18: 

Table 18, Supported ECDH Profiles 

Bit ECDH Profile Description Public Key length 

0 Curve25519 
Indicates support for 
Curve25519 [27] 

32 Bytes 

All other bits are reserved and MUST be set to zero by a sending node.  

If the ECDH Profile is supported the corresponding bit MUST be set to ‘1’ 
If the ECDH Profile is not supported the corresponding bit MUST be set to ‘0’ 

Curve25519 MUST be supported by a node supporting the Security 2 Command Class. 

Requested Keys (1 byte) 

This field is used by a joining node to advertise the keys that the manufacturer finds most appropriate 
for the actual type of product. 

The joining node MAY request a subset of the keys defined in Table 19.  

The field MUST be treated as a bitmask and MUST comply with the format indicated in Table 19: 

Table 19, Requested Keys 

Security Level 
(1 highest -  
4 lowest) 

Bit KEX Scheme Key Indicates support for 

1 2 KEX Scheme 1 S2.2 S2 Access Control Class 

2 1 KEX Scheme 1 S2.1 S2 Authenticated Class 

3 0 KEX Scheme 1 S2.0 S2 Unauthenticated Class 

4 7 KEX Scheme 1 S0 S0 Secure legacy devices 

All other bits are reserved and MUST be set to zero by a sending node. Reserved bits MUST be ignored 
by a receiving node. 

If the Key is requested the corresponding bit MUST be set to ‘1’. 
If the Key is not requested the corresponding bit MUST be set to ‘0’. 

A node supporting the Security 2 Command Class MUST support at least one Key. A node may support 
multiple keys. 
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3.6.7.3 Security 2 KEX Set Command 
This command is used for two purposes: 

1) During initial key exchange this command is used by an including node to grant network keys to 
a joining node. The joining node subsequently requests the granted keys once a temporary 
secure channel has been established. 
The including node MUST send the command non-securely. 

2) After establishment of the temporary secure channel, the joining node issues this command to 
the including node to securely state its intention to request the keys that were granted 
previously. 
The joining node MUST send the command securely via the temporary secure channel, i.e. 
encapsulated using the TempKeyCCM and TempPersonalizationString. 

This command MUST be ignored if Learn mode and Add Node mode are both disabled. 
The including node MUST return the Security 2 KEX Report Command in response to this command 
unless it is to be ignored. 

This command MUST NOT be issued via multicast addressing. 

A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Command = KEX_SET 

Reserved Request 
CSA 

Echo 

Selected KEX Scheme 

Selected ECDH Profile 

Granted Keys 

 
Reserved 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

Echo (1 bit) 

If this flag is set to ‘1’, the fields of this command MUST be an identical copy of the KEX Set Command 
received prior to the establishment of the temporary secure channel.  

The joining node MUST set this flag to ‘1’. 
The including node MUST abort the S2 bootstrapping if it receives a KEX Set Command with this flag set 
to ‘0’. 
If the “Echo” flag is set to ‘1’ and the Add Node mode is enabled, the including node MUST return a KEX 
Report Command with the “Echo” flat set to ‘1’ in response to this command.  

The including node MUST set this flag to ‘0’. 
The joining node MUST abort the S2 bootstrapping if it receives a KEX Set Command with this flag set to 
‘1’. 
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Request CSA (1 bit) 

If this flag is set to ‘1’, the including node is permitting the use of Client-side Authentication (CSA).  

Selected KEX Scheme (1 byte) 

This field is used to specify the Scheme that the including node is granting to the joining node. Exactly 
one bit MUST be set to ‘1’. Reserved bits MUST be examined for the purpose of verifying that exactly 
one bit is set. Several bits set MUST trigger an error as indicated in 3.6.6.4.1. 

For field format, refer to Table 17. 

Selected ECDH Profile (1 byte) 

This field specifies the ECDH Profile selected by the including node for ECDH Key Exchange. The field 
MUST carry exactly one of the bits listed in Table 18. Reserved bits MUST be examined for the purpose 
of verifying that exactly one bit is set. 

 

For field format, refer to Table 18. 

 

Granted Keys (1 byte) 

If the Echo field is set to ‘0’, this field MUST specify the keys which the including node is granting to the 
joining node. 
The value of this field MUST be the same set or a subset of the Requested Keys field advertised in the 
KEX Report by the joining node during initial S2 bootstrapping. 

If the Echo field is set to ‘1’, this field MUST advertise the keys which the including node granted to the 
joining node in the previous KEX Set Command sent by the including node to the joining node. 

For field format, refer to Table 19. 

A joining node MUST NOT issue Network Key Get requests for keys that are not specified in this field. 
An including node MUST return a Security 2 KEX Fail Command and abort S2 bootstrapping if it 
subsequently receives a Network Key Get request for keys that are not specified in this field. 

3.6.7.4 Security 2 KEX Fail Command 
This command is used to advertise an error condition to the other party of am S2 bootstrapping 
process. 

The interrupt points that may trigger the transmission of this command are defined in section 3.6.6.3. 

This command MUST be ignored if Learn mode and Add Node mode are both disabled. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Command = KEX_FAIL 

KEX Fail Type 

 
KEX Fail Type (1 byte) 

This field MUST advertise one of the types defined in Table 20 
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Table 20, Security 2 KEX Fail::KEX Fail Type 

Value KEX Fail Type Identifier Description 

0x01 KEX_FAIL_KEX_KEY 
Key failure indicating that no match exists between 
requested/granted keys in the network. 

0x02 KEX_FAIL_KEX_SCHEME 
Scheme failure indicating that no scheme is supported by 
controller or joining node specified an invalid scheme. 

0x03 KEX_FAIL_KEX_CURVES 
Curve failure indicating that no curve is supported by 
controller or joining node specified an invalid curve. 

0x05 KEX_FAIL_DECRYPT Node failed to decrypt received frame. 

0x06 KEX_FAIL_CANCEL User has cancelled the S2 bootstrapping. 

0x07 KEX_FAIL_AUTH 

The Echo KEX Set/Report frame did not match the earlier 
exchanged frame. 

A command is received using the wrong Security level. 

0x08 KEX_FAIL_KEY_GET 
The joining node has requested a key, which was not granted 
by the including node at an earlier stage. 

0x09 KEX_FAIL_KEY_VERIFY 
Including node failed to decrypt and hence verify the received 
frame encrypted with exchanged key. 

0x0A KEX_FAIL_KEY_REPORT 
The including node has transmitted a frame containing a 
different key than what is currently being exchanged. 

 

3.6.7.5 Security 2 Public Key Report Command 
This command is used by both the including and the joining node to establish the Elliptic Curve Shared 
Secret. This is needed to establish the temporary secure channel that enables transfer of all other keys. 

This command MUST be ignored if Learn mode and Add Node mode are both disabled. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Command = PUBLIC_KEY_REPORT 

Reserved 
Including 

Node 

ECDH Public Key 1 (MSB) 

… 

ECDH Public Key N (LSB) 

 
Reserved 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

Including Node (1 bit) 

The Including Node flag advertises if the sending node is the including node or the joining node.  
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When sent by the including node this flag MUST be set to ‘1’. 
The joining node MUST abort S2 bootstrapping if this flag is set to ‘0’ in a received command. 

When sent by the joining node this flag MUST be set to ‘0’. 
The including node MUST abort S2 bootstrapping if this flag is set to ‘1’ in a received command. 

ECDH Public Key (N bytes) 

Device Specific ECDH Public Key of the sending node.  

The public key MUST be unique for each node. The length of this field is determined by the chosen 
ECDH profile. Refer to Table 18. 

If Controller-Side Authentication is used, the DSK bytes 1..2 MUST be obfuscated with zeros (0x00) by 
the joining node  
If Client-Side Authentication (CSA) is used, the DSK bytes 1..4 MUST be obfuscated with zeros (0x00) by 
the including node. 

If no authentication is used (S2 Unauthenticated and/or S0 classes are granted only), both joining and 
including nodes ECDH Public Keys MUST be transmitted in their integrality 

3.6.7.6 Security 2 Network Key Get Command 
This command is used by a joining node to request one key from the including node. One instance of 
this command MUST be sent for each key that was granted by the including node.  

The command MUST be sent security encapsulated using the TempKeyCCM and 
TempPersonalizationString. 

This command MUST be ignored unless the Add Node mode is enabled. 

The Security 2 Network Key Report Command MUST be returned in response to this command unless 
this command is ignored. 

This command MUST NOT be issued via multicast addressing. 

A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Command = SECURITY_2_NETWORK_KEY_GET 

Requested Key 

 
Requested Key (1 byte) 

This field is used to request a network key.  

Only one key MUST be requested at a time, i.e. only 1 bit MUST be set to ‘1’. This field MUST be 
encoded according to Table 19. 
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3.6.7.7 Security 2 Network Key Report Command 
This command is used by an including node to transfer one key to the joining node. 

The command MUST be sent security encapsulated using the TempKeyCCM and 

TempPersonalizationString. 

This command MUST be ignored unless the Learn mode is enabled. 

The joining node MUST store the received network key in non-volatile memory. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Command = SECURITY_2_NETWORK_KEY_REPORT 

Granted Key 

Network Key byte 1 

… 

Network Key byte 16 

 
Granted Key (1 byte) 

This field is used to indicate which Network Key is carried in the command and MUST be encoded 
according to Table 19 

Network Key (16 bytes) 

This field carries the granted Network Key.  

3.6.7.8 Security 2 Network Key Verify Command 
This command is used by a joining node to verify a newly exchanged key with the including node.  

This command MUST be sent security encapsulated using the Key that was just exchanged and MUST be 
encrypted using the derived KeyCCM and PersonalizationString.  

The Security 2 Transfer End Command MUST be returned in response to this command unless it is to be 
ignored. 

The joining node MUST NOT consider the actual key exchange to be complete until a Security 2 Transfer 
End command has been received from the including node. 

This command MUST be ignored if Learn mode and Add Node mode are both disabled. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Command = SECURITY_2_NETWORK_KEY_VERIFY 

 

3.6.7.9 Security 2 Transfer End Command 
This command is used by the including node to complete the verification of each individual key 
exchange while the joining node uses this command to complete the S2 bootstrapping process after all 
granted keys have been successfully exchanged. 

The joining node MUST send this command after all granted keys have been verified. 
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This command MUST be ignored if Learn mode and Add Node mode are both disabled. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Command = SECURITY_2_TRANSFER_END 

Reserved 
Key 

Verified 

Key 
Request 

Complete 

 
Reserved 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

Key Verified (1 bit) 

The including node MUST set this flag to ‘1’ if it has successfully verified the Key Verify Command using 
the newly exchanged network key. 

This flag MUST be set to ‘0’ in all other cases.  

If this field is set to 0, a receiving node MUST abort S2 bootstrapping and consider that S2 
bootstrapping process failed. 

Key Request Complete (1 bit) 

The joining node MUST set this flag to ‘1’ if it has completed exchanging all granted keys. 

This flag MUST be set to ‘0’ in all other cases. 

The including node MUST consider S2 bootstrapping to be successfully completed if it receives this 
command with this flag set to ‘1’ and all keys have been exchanged. 

3.6.8 Discovery of Security capabilities commands 
A controlling node may discover the Command Class capabilities of a securely included node. 

The advertised capabilities MAY depend on the actual security level used to request capabilities.  
Likewise, the advertised capabilities at a given security level may depend on the S2 bootstrapping 
security level. 
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3.6.8.1 Security 2 Commands Supported Get Command 
This command is used to query the command classes that a joining node supports via secure 
communication.  

Security 2 encryption MUST be used when transmitting this command. 

The Security 2 Commands Supported Report Command MUST be returned in response to this 
command. The response MUST be sent encrypted, using the same Security 2 Class key and 
encapsulation as was used for this command. 

A node receiving this command on its highest granted Security Class MUST respond with the Security 2 
Commands Supported Report Command containing all supported secure command classes.  

A node receiving this command on any other Security Class than its highest granted Security Class MUST 
respond with the Security 2 Commands Supported Report Command containing no command classes.  

A node receiving the Security Commands Supported Get of the (non S2) Security 0 Command Class 
(using S0 key and S0 Message Encapsulation Command), MUST respond with the Security 0 Commands 
Supported Report containing no command classes. 

This command MUST NOT be issued via multicast addressing. 
A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Command = SECURITY_2_COMMANDS_SUPPORTED_GET 

 

3.6.8.2 Security 2 Commands Supported Report Command 
This command is used to advertise the commands that a joining node supports via secure 
communication. Security 2 encryption MUST be used when transmitting this command. 

Transport Service segmentation MUST be used if the command is longer than the available payload 
length of a single Z-Wave MAC frame. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SECURITY_2 

Command = SECURITY_2_COMMANDS_SUPPORTED_REPORT 

Command Class 1 

… 

Command Class N 

 
This command MUST NOT advertise command classes that the joining node can control in other nodes. 
Network management user interfaces SHOULD discover control capabilities of a node via the 
Association Group Information (AGI) Command Class. 
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As per section 3.6.6, a node may be assigned up to four keys for the S2 Unauthenticated, S2 
Authenticated, S2 Access Control and S0 Classes, respectively. 

For instance, a light dimmer may accept non-securely transmitted commands if it is not S2 
bootstrapped, while the same dimmer will require secure communication for commands if it is S2 
bootstrapped. This allows a Security 2 enabled light dimmer to be compatible with first-generation non-
secure Z-Wave networks while it will operate fully secure when included in a S2 network at a later time. 

In another example, a door lock may be designed to work only with the S0 network key or the S2 Access 
Control Class key. Inclusion in a network without security bootstrapping will not allow operation of the 
lock and if bootstrapped with the S2 Access Control Class, S0 encrypted commands will also be ignored. 

The Security 0 and Security 2 Command Class MUST NOT be advertised in this command 
The Transport Service Command Class MUST NOT be advertised in this command. 

A sending node MAY terminate the list of supported command classes with the 
COMMAND_CLASS_MARK command class identifier. 

A receiving node MUST stop parsing the list of supported command classes if it detects the 
COMMAND_CLASS_MARK command class identifier in the Security 2 Commands Supported Report. 

Command Class (N bytes) 

This field advertises the command classes that the node supports. 

A normal Command Class identifier MUST be one byte long in the range (0x20 – 0xEE). 
An extended Command Class identifier MUST be two bytes long where the first byte is in the range 
(0xF1 – 0xFF), while the second byte is in the range 0x00 – 0xFF. 

A joining node MAY advertise extended command classes. 
An including node MUST accept extended command classes. 

3.7 Supervision Command Class, version 1 
The Supervision Command Class allows a sending node to request application-level delivery 
confirmation from a receiving node. The delivery confirmation includes relevant application-level status 
information in the confirmation message. 
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3.7.1 Terminology 
The controlling application initiates an operation by sending a Supervision encapsulated command to a 
supporting node. The supporting node returns an immediate confirmation for the reception while 
advertising its ability to perform the requested operation. The confirmation may advertise the 
application status <Working>, <Success>, <No Support> or <Fail> depending on the condition of the 
supporting node. One or more application status updates may follow later to report problems, delays or 
the completion of the requested operation. 

A door lock application is used as example in the following. Other uses may apply. 

A magnetic lock may return the <Success> indication immediately since it takes only a few milliseconds 
to apply power to the electromagnet. In that case, no status updates are needed later. 

An electro-mechanical lock may need time to complete its movement. A <Working> indication is issued 
along with the expected duration, e.g. 5 seconds. Ideally, the movement is completed and a <Success> 
indication is returned 5 seconds later. A motor defect or something jamming the movement may 
prevent the lock from completing the requested operation. A <Fail> indication is returned in that case. 
If the motor runs slower than anticipated, another <Working> indication may be issued when e.g. 75% 
of the expected duration has elapsed; reporting the new expected duration. If it runs faster, a 
<Success> indication may be issued before it was expected. Both cases allow a GUI progress bar to 
respond instantly rather than waiting for a polling response. 

3.7.2 Compatibility considerations 
This command class is used as an integrated part of the Security 2 Command Class but may also be used 
for non-secure applications.  

The Supervision Command Class MAY be used for solitary commands such as Set, Remove and 
unsolicited Report commands. 

The Supervision Command Class MUST NOT be used for session-like command flows such as 

GetReport command exchanges or firmware update. 

The Supervision Get Command MAY carry multiple commands grouped with the Multi Command 
encapsulation command.  

3.7.2.1 Node Information Frame (NIF) 
A supporting node MUST always advertise the Supervision Command Class in its NIF and Multi Channel 
Capability Report, regardless of the inclusion status and security bootstrapping outcome. 

3.7.2.2 Encapsulated commands 
Supervision Command Class is intended for encapsulating solitary commands; it is to say commands 
that do not require any response to be returned.  

It exists Set type Commands that may optionally require to return a status or optional command such as 
Notification Report or handshake mechanism. When receiving such a Set type command in a 
Supervision Get Command: 

• The Supervision Report MUST be returned by a receiving node. 

• Additional commands MAY be returned. These commands SHOULD be returned before the 
Supervision Report Command 

A sending node MUST NOT use handshake mechanisms for Set Commands when using Supervision 
encapsulation. 

It is OPTIONAL for a receiving node to return an answer to a Set type Command which requires a 
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response to be returned if received with Supervision encapsulation. 

3.7.3 Supervision Get Command 
This command is used to initiate the execution of a command and to request the immediate and future 
status of the process being initiated. 

The Supervision Report Command MUST be returned in response to this command unless it is to be 
ignored. 

The <SUCCESS> status MUST be advertised in the Supervision Report Command if the operation is 
completed immediately. 

If the requested operation is accepted but cannot be completed immediately, the <WORKING> status 
MUST be advertised in the Supervision Report Command along with the expected duration for the 
operation. The “Status Updates” field MUST be consulted to determine if status updates are to be 
advertised in the future. 

This command MAY be issued via multicast addressing. 

A receiving node MUST NOT ignore the encapsulated command if this command is received via 
multicast addressing. 

A receiving node MUST NOT return a response if this command is received via multicast addressing. The 
Z-Wave Multicast frame, the broadcast NodeID and the Multi Channel multi-End Point destination are 
all considered multicast addressing methods. 

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SUPERVISION 

Command = SUPERVISION_GET 

Status 

Updates 
Reserved Session ID 

Encapsulated Command Length 

Encapsulated Command 1 

... 

Encapsulated Command N 

 
Reserved 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

Status Updates (1 bit) 

This flag is used to allow a receiving node to advertise application status updates in future Supervision 
Report Commands.  
As an example, this flag must be set to allow a supporting node to immediately advertise the 
<WORKING> status in a Supervision Report Command and subsequently advertise the <SUCCESS> 
status in another Supervision Report Command once the operation has been completed. 

The value of this field MUST comply with Table 21. 
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Table 21, Supervision Get :: Status Updates 

Value Required behaviour 

‘0’ Only return a report now 

‘1’ Return a report now and more later if needed 

 
Session ID (6 bits) 

The same command may be received multiple times, e.g. due to retransmissions. 

A sending node MUST increment this field each time a new unique Supervision Get Command is issued. 

A sending node MAY use the same Session ID for a multicast and singlecast follow-up carrying the same 
encapsulated command. A sending node MAY also use the same Session ID for all destinations of 
singlecast follow-up commands. 

A receiving node MUST ignore duplicate singlecast commands having the same Session ID and 
MUST NOT return a Supervision Report to the command, if the command was received without Security 
encapsulation. 

A receiving node MUST abort an active operation in favor of a new command with a new Session ID if 
that new command affects the same resources as the active operation. 

A receiving node MAY abort an active operation in favor of a new command with a new Session ID even 
if the new command does not affects the same resources as the active operation, e.g. if the node does 
not have resources to handle multi-session state management.  

Encapsulated Command Length (1 Byte) 

This field is used to specify the length of the encapsulated command. 

The value MUST specify the number of bytes in the Encapsulated Command field. 

Encapsulated Command (N bytes) 

This field is used to carry an encapsulated command. 

The length of this field MUST be in the range 1..255 bytes. 

The field MAY carry a Multi Command Encapsulated Command which contains multiple commands. 
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3.7.4 Supervision Report Command 
This command is used to advertise the status of one or more command process(es).  

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SUPERVISION 

Command = SUPERVISION_REPORT 

More 

Status 

Updates 

Reserved Session ID 

Status 

Duration 

 
Reserved 

This field MUST be set to 0 by a sending node and MUST be ignored by a receiving node. 

More Status Updates 

This field is used to advertise if more Supervision Reports follow for the actual Session ID. 

The value of this field MUST comply with Table 22. 

Table 22, Supervision Report :: More Status Updates 

Value Required behaviour 

‘0’ This is the last report 

‘1’ More reports follow according to the advertised duration 

 
 
Session ID (1 Byte) 

This field MUST carry the same value as the Session ID field of the Supervision Get Command which 
initiated this session. 

Status (8 bit) 

This field is used advertise the current status of the command process.  

This field MUST reflect the actual application status of the received encapsulated command.  

If a Multi Command encapsulated group of commands is being supervised, an error indication (such as 
<No Support> or <Fail>) MUST be issued if just one of the Multi Command encapsulated commands 
triggers an error condition.  

The <Success> indication MUST signify that all commands carried in a Multi Command encapsulation 
commands have completed successfully. 

The value of this field MUST comply with Table 23. 
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Table 23, Supervision Report :: Status identifiers 

Value Identifier Description 

0x00 NO_SUPPORT The command is not supported by the receiver. 

A zero Duration value MUST be advertised. 

This identifier MUST be advertised if one or more Multi 
Command encapsulated commands are not supported. 

0x01 WORKING The command was accepted by the receiver and 
processing has started. 

A non-zero Duration value MUST be advertised.  

If processing is completed instantly, the receiver MUST skip 
advertising the WORKING status and return the SUCCESS 
status instead.  

If Status Updates was set to 1 in the Get Command, this 
command MUST be followed by another Supervision 
Report when the duration has elapsed. The new status 
MUST be one of WORKING, FAIL or SUCCESS. 
The duration MAY be cut short by sending the new 
Supervision Report before the original predicted duration 
has elapsed. 

If used for Multi Command encapsulated commands, the 
advertised Duration value MUST represent the slowest of 
the commands. 
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Value Identifier Description 

0x02 FAIL The command was accepted by the receiver but processed 
with a resulting application status which differs from the 
supervised command requested 

Examples include but are not limited to: 

The node may not be ready to perform the requested 
operation 
(e.g. a door lock cannot lock if the door is open)  or 

the command processing reached an unexpected situation 
(e.g. a door lock being jammed while working)   or 

there is an application specific limitation (e.g. an irrigation 
controller which only accepts one open valve at a time). 

A zero Duration value MUST be advertised. 

This status identifier MUST be advertised if the processing 
of one or more Multi Command encapsulated commands 
failed. 

0xFF SUCCESS The requested command has been completed and the 
application status is as the supervised command 
requested. 

A controlling application SHOULD NOT verify the 
application status, e.g. by sending a Get Command, after 
receiving this status identifier. 

A zero Duration value MUST be advertised. 

This identifier MUST be advertised if the processing of all 
Multi Command encapsulated commands was successful. 

All other values are reserved. Reserved values MUST NOT be used by a sending node and MUST be 
ignored by a receiving node. 

Duration (8 bits) 

The Duration field MUST advertise the time needed to complete the current operation. The encoding of 
the Duration field MUST be according to Table 24. 

Table 24, Supervision Report::Duration 

Duration Description 

0x00 0 seconds. (Already at the Target Value.) 

0x01-0x7F 1 second (0x01) to 127 seconds (0x7F) in 1 second resolution. 

0x80-0xFD 1 minute (0x80) to 126 minutes (0xFD) in 1 minute resolution. 

0xFE Unknown duration 

0xFF Reserved 
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3.7.5 Examples and use-cases  

3.7.5.1 Set Type commands 
A supporting node MUST return the Supervision status of solitary Set type commands for all its 
supported Command Classes. 

For actuator control Set commands with a corresponding Get type command to read back the value(s), 
this means that the response codes MUST be used as follows: 

- SUCCESS: The application understood the command and completed the requested operation. The 
values specified in the Set Command would be returned if the supporting node would return an 
answer to the corresponding Get Command. The only exception are special values (e.g. value to 
set to the last non-zero level) representing another value. 
 

- WORKING: The application understood the command and started performing the requested 
operation, but the controller needs to wait before the target value is reached. The supporting 
node would not return the values specified in the Set Command yet if it returned an answer to 
the corresponding Get Command 
 

- FAIL: The application understood the command and cannot perform the requested operation 
(e.g. invalid value or mechanical failure). The supporting node will not return the values 
specified in the Set Command if it returned an answer to the corresponding Get Command. 

The Door Lock Operation Set Command is an example of an actuator control Set command with a 
corresponding Get Command. 

For actuator control Start and Stop commands or commands without a corresponding Get type read 
back, this means that the response codes MUST be used as follows: 

- SUCCESS: The application understood the command and completed the requested operation; i.e. 
successfully started or stopped the requested operation. 
 

- FAIL: The application did not understand the command or could not perform the requested 
operation (if applicable) 

The Multilevel Switch Start Level Change Command, Multilevel Switch Stop Level Change Command and 
the Powerlevel Test Node Set are examples of actuator control Start/Stop commands. 

For configuration Set commands, this means that the response codes MUST be used as follows: 

- SUCCESS: The application understood the command and accepted all the parameter(s) and 
value(s). The values specified in the Set Command would be returned if the supporting node 
would return an answer to the corresponding Get Command. 
 

- FAIL: The application had one or more error while parsing or applying the parameters (e.g. the 
command was partially or completely ignored due to invalid values) 

The Door Lock Configuration Set Command, Configuration Set and Association Set Command are 
examples of configuration commands. 
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3.7.5.2 Powerlevel Test Node Set Command 
The Powerlevel Test Node Set Command SHOULD be considered as a Start/Stop command or command 
without a corresponding Get Command. The corresponding Get Command (Powerlevel Test Node Get 
Command) is used to query subsequent results and Supervision cannot replace the need for a controller 
to issue a subsequent Get Command. 

A receiving node SHOULD return SUCCESS when starting the Powerlevel Test Node test. 

3.7.5.3 Report/Notification Type Commands 
A supporting node MAY use Supervision encapsulation for issuing an unsolicited Report/Notification 
type Command. For example, a sleeping node issuing a sensor reading receives a delivery confirmation 
immediately and can return to sleep as soon as the Supervision Report is received.  

A node MUST return a Supervision status of a Report/Notification type command for any Command 
Classes, regardless whether it is supported, controlled or neither. 

A controlling node SHOULD return a SUCCESS or NO_SUPPORT status when receiving such commands. 

3.7.5.4 Remove Type commands  
A supporting node MUST return the Supervision status of solitary Remove type commands for all its 
supported Command Classes. The remove type commands must be treated as Set type of commands.  

For Remove command, this means that the response codes MUST be used as follows: 

- SUCCESS: The application understood the command and removed the specified parameter(s) 
and values. The values specified in the Remove Command would not be returned if the 
supporting node would return an answer to the corresponding Get Command. 

- FAIL: The application had one or more error while applying the command (e.g. the command 
was partially or completely ignored due to invalid values) 

The Association Remove Command and Schedule Remove Command are examples of remove 
commands. 

 

3.8 Supervision Command Class, version 2 
The Supervision Command Class allows a sending node to request application-level delivery 
confirmation from a receiving node. The delivery confirmation includes relevant application-level status 
information in the confirmation message. 

3.8.1 Compatibility considerations  
Compatibility consideration requirements from version 1 MUST also be observed by a version 2 
supporting node.  

Supervision Command Class, version 2 is backwards compatible with Supervision Command Class, 
version 1. Fields and commands not described in this version MUST remain unchanged from version 1. 

The Supervision Report Command has been extended to enable expedited message delivery between 
Wake Up Destination and Wake Up Node (refer to the Wake Up Command Class). It leverages sleeping 
nodes using Supervision encapsulation to tell them to initiate a Wake Up Period. 
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3.8.2 Supervision Report Command  
This command is used to advertise the status of one or more command process(es).  

7 6 5 4 3 2 1 0 

Command Class = COMMAND_CLASS_SUPERVISION 

Command = SUPERVISION_REPORT 

More 
Status 

Updates 

Wake Up 
Request 

Session ID 

Status 

Duration 

All fields not described below remain unchanged from version 1 

Wake Up Request (1 bit) 

This field is used to indicate to the receiving node that it MUST start a Wake Up Period.  

If the receiving node does not support the Wake Up On Demand functionality, this field MUST be 
ignored. 

The Wake Up On Demand functionality is part of the Wake Up Command Class, version 3.  

A node supporting the Wake Up On Demand functionality MUST return a Wake Up Notification 
Command if the Wake Up destination node issued a this command with the Wake Up Request bit set to 
1. 

A node supporting the Wake Up On Demand functionality MUST ignore the Wake Up Request field if 
the Supervision Report is not issued by the Wake Up Destination. 

3.8.2.1 Wake Up on Demand functionality  
The Wake Up on Demand functionality is shown in Figure 20. This functionality allows the controller to 
issue important commands to the sleeping device before its next Wake Up Period.  

When the controlling node receives a Supervision encapsulated frame from the sleeping node, it MAY 
speed up the delivery of some important commands by setting the Wake Up Request bit to 1, if the 
sleeping node supports this functionality.  
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Figure 20, Wake Up on Demand functionality  
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3.9  Transport Service Command Class, version 1 [OBSOLETED] 

THIS COMMAND CLASS HAS BEEN OBSOLETED 

New implementations MUST use the Transport Service Command Class version 2. 

The Transport Service Command Class Version 2 redefines the frame formats used by the 
command class. 
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3.10 Transport Service Command Class, version 2 
The Transport Service Command Class supports the transfer of datagrams larger than the Z-Wave 
frame. 

The Transport Service Command Class, version 2 is defined by [16].  

The following sections provide additional requirements and frame flows. 

3.10.1 Compatibility considerations 
A node supporting the Transport Service Command Class, version 2:  

• MUST NOT send Transport Service segments with the Payload field longer than 39 bytes. 

• MUST accept datagrams up to 117 bytes long (3 segments of 39 bytes each). 

• MAY accept larger datagrams. 

3.10.1.1 Node Information Frame (NIF) 
A node supporting the Transport Service Command Class, version 2: 

• MUST always advertise this Command Class in its NIF, regardless of the inclusion status and 
security bootstrapping outcome. 

• MUST NOT advertise this Command Class in its S0/S2 Supported Command Class list or in the 
Multi Channel End Point capabilities. 

3.10.2 Example Frame flows 
A supporting node MUST comply with the following frame flows. 

3.10.2.1 As things should always work – the default case 

• Node A initiates a 117-byte frame transmission to Node B 
o Node A sends FirstSegment(datagram size = 117, Session ID = 10, Payload = bytes 1..39) 
o Node B receives the FirstSegment with valid Transport Service FCS (16-bit checksum) and valid 

MPDU FCS (8 or 16 bits checksum, depending on transmission speed) 
▪ Node B creates a tracking list for the datagram; bytes 1..39 are marked as received 
▪ Node B starts segment rx timer 

o Node A sends SubsequentSegment(datagram size = 117, datagram offset = 39, Session ID = 10, 
Payload = bytes 40..78) 

o Node B receives the SubsequentSegment with valid Transport Service and MPDU FCS 
▪ Node B updates the tracking list for the datagram; bytes 40..78 are marked as received 
▪ Node B (re-)starts segment rx timer 

o Node A sends SubsequentSegment(datagram size = 117, datagram offset = 78, Session ID = 10, 
Payload = bytes 79..117) 
▪ Node A starts a segment_complete tx timer 

o Node B receives SubsequentSegment with valid Transport Service and MPDU FCS 
▪ Node B updates the tracking list for the datagram; bytes 79..117 are marked as received, 

indicating that this was the last segment 
▪ Node B checks the tracking list for missing segments; none found 

o Node B sends SegmentComplete(Session ID = 10) 
o Node A receives SegmentComplete(Session ID = 10) with valid MPDU FCS (8 or 16 bits 

checksum, depending on transmission speed) 

3.10.2.2 Losing first segment of a long message 

• Node A initiates a 117-byte frame transmission to Node B:  
 Node A sends FirstSegment(datagram size = 117, Session ID = 10, Payload = bytes 1..39). 
 Node B receives FirstSegment invalid Transport Service or MPDU FCS (the command is ignored). 
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 Node A sends SubsequentSegment(datagram offset = 39) 
 Node B receives the SubsequentSegment correctly (valid Transport Service and MPDU FCS) 
 Node B sends SegmentWait(Pending segments=0) because no session is open. 
 Node A waits and restarts the transmission from the FirstSegment. 

 

3.10.2.3 Losing subsequent segment 

• Node A initiates a 117-byte frame transmission to Node B 
 Node A sends FirstSegment(datagram size = 117, Session ID = 10, Payload = bytes 1..39) 
 Node B receives the FirstSegment correctly 

 Node B creates a tracking list for the datagram; bytes 1..39 are marked as received 
 Node B starts segment rx timer 

 Node A sends SubsequentSegment(datagram offset = 39) 
 Node B receives SubsequentSegment with invalid Transport Service or MPDU FCS. (the 

command is ignored) 
 Node A sends SubsequentSegment(datagram offset = 78) 

 Node A starts segment_complete tx timer 
 Node B receives SubsequentSegment correctly  

 Node B updates the tracking list for the datagram, indicating that this was the last segment 
 Node B checks tracking list for the datagram; bytes 40..78 are missing 

 Node B sends SegmentRequest(datagram offset = 39) 
 Node A receives SegmentRequest(datagram offset = 39) correctly 
 Node A send SubsequentSegment(datagram offset = 39) 
 Node B receives SubsequentSegment(datagram offset = 39) correctly 

 Node B updates the tracking list for the datagram 
 Node B checks the tracking list for missing segments; none found 
 Node B clears segment rx timer 

 Node B sends SegmentComplete(Session ID = 10) 
 Node A receives SegmentComplete(Session ID = 10) correctly 
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3.10.2.4 Losing last segment 

• Node A initiates a 117-byte frame transmission to Node B 
 Node A sends FirstSegment(datagram size = 117, Session ID = 10, Payload = bytes 1..39) 
 Node B receives FirstSegment 

 Node B creates a tracking list for the datagram; bytes 1..39 are marked as received 
 Node B starts segment rx timer 

 Node A sends SubsequentSegment(datagram offset = 39) 
 Node B receives SubsequentSegment correctly 

 Node B updates the tracking list for the datagram; bytes 40..78 are marked as received 
 Node B (re-)starts segment rx timer 

 Node A sends (the last) SubsequentSegment(datagram offset = 78) 
 Node A starts segment_complete tx timer 

 Node B receives SubsequentSegment with invalid Transport Service or MPDU FCS. (the 
command is ignored) 

 Node B segment rx timer times out. 
 Node B checks tracking list for the datagram; bytes 79..117 are missing 

• Node B sends SegmentRequest(datagram offset = 78) 

• Node B starts a segment rx timer to wait for the SubsequentSegment frame 

• If the segment rx timer times out, Node B bails out: discard all received segments and 
return to idle (e.g. sender may be down or sleeping) 

 Node A receives SegmentRequest(datagram offset = 78) 
 Node A sends SubsequentSegment(datagram offset = 78) 
 Node B receives SubsequentSegment(datagram offset = 78) 

 Node B updates the tracking list for the datagram; bytes 79..117 are marked as received 
 Node B checks tracking list for missing segments; none found 

 Node B sends SegmentComplete(Session ID = 10) 
 Node A receives SegmentComplete(Session ID = 10) correctly 

 Node A stops the segment_complete tx timer 
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3.10.2.5 Losing SegmentComplete 

• Node A initiates a 117-byte frame transmission to Node B 
 Node A sends FirstSegment(datagram size = 117, Session ID = 10, Payload = bytes 1..39) 
 Node B receives FirstSegment correctly 

 Node B creates tracking list for the datagram; bytes 1..39 are marked as received 
 Node B starts a segment rx timer 

 Node A sends SubsequentSegment(datagram offset = 39) 
 Node B receives SubsequentSegment(datagram offset = 39) correctly 

 Node B updates the tracking list for the datagram; bytes 40..78 are marked as received 
 Node B (re-)starts segment rx timer 

 Node A sends SubsequentSegment(datagram offset = 78) 
 Node A starts a segment_complete timer 

 Node B receives SubsequentSegment(datagram offset = 78) correctly. 
 Node B updates the tracking list for the datagram; bytes 79..117 are marked as 

received, indicating that this was the last segment 
 Node B checks tracking list for missing segments; none found 

 Node B sends SegmentComplete(Session ID = 10) 
 Node A receives SegmentComplete with an invalid MPDU FCS. (the command is ignored) 
 Node A segment_complete tx timer times out 

 Node A sends SubsequentSegment(datagram offset = 78) one more time 

• Node A starts a segment_complete timer again. 

• If the segment_complete timer times out, Node A bails out: return “Error” callback 
to calling application 

 Node B receives SubsequentSegment(datagram offset = 78) correctly 
 Node B updates the tracking list for the datagram; bytes 79..117 are marked as 

received, indicating that this was the last segment 
 Node B checks tracking list for missing segments; none found 

 Node B sends SegmentComplete(Session ID = 10) once more 
 Node A receives SegmentComplete(Session ID = 10) correctly 
 Node A stops the segment_complete timer 
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